Skip to main content
Log in

Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

Gamma-irradiated blends of polyethylene (PE) with ethylene-propylene-diene copolymer (EPDM) and a thermotropic liquid-crystalline polymer (LCP) are investigated at absorbed radiation doses not exceeding 150 kGy (10 kGy=1 Mrad). The temperature dependences of elastic moduli, tension diagrams at a temperature above the melting point of the crystalline phase of PE, and long-term strain recovery curves for oriented test specimens are presented. The kinetics of thermal relaxation and shrinkage stresses in previously oriented composite specimens upon their heating and cooling is investigated. Data on the influence of LCP additions on the adhesive interaction of the compositions with steel are obtained. The peculiarities of thermomechanical and adhesion properties of these composites are discussed taking into account the morphologic and calorimetric data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Singh and J. Silverman (eds.), Radiation Processing of Polymers, Hanser Publ., Munich—Vienna—New York—Barcelona (1991).

    Google Scholar 

  2. R. J. Woods and A. K. Pikaev, Applied Radiation Chemistry: Radiation Processing, John Wiley & Sons (1993).

  3. E. E. Finkel’, V. L. Karpov, and S. M. Berlyat, Technology of Radiation Modification of Polymers [in Russian], Energoatomizdat, Moscow (1983).

    Google Scholar 

  4. M. Kalnins, E. Neimanis, and V. Kalkis, High-Molecular Compounds [in Latvian], Zvaigzne, Riga (1981).

    Google Scholar 

  5. V. K. Knyazev and N. A. Sidorov, Irradiated Polyethylene in Technique [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  6. A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Oxford—London—New York—Paris (1960).

    Google Scholar 

  7. J. Zicans, M. Kalnins, T. Bocoka, V. Kalkis, and A. K. Bledzki, “Studies of morphology, rheological, mechanical and thermorelaxation properties of chemically and radiation modified PE/EPDM copolymer blends,” J. Macromol. Sci. Pure Appl. Chem., No. 7/8, 1217–1237 (1998).

  8. V. Kalkis, M. Kalnins, R. D. Maksimiv, and J. Zicans, “Features of thermomechanical properties of radiation-modified blends of high-density polyethylene with liquid-crystalline copolyester,” Mech. Compos. Mater.,34, No. 1, 94–105 (1998).

    Article  CAS  Google Scholar 

  9. V. Kalkis, R. D. Maksimov, and J. Zicans, “Thermomechanical properties of radiation-modified blends of polyethylene with liquid-crystalline copolyester,” Polymer Eng. Sci.,39, No. 8, 1375–1382 (1999).

    Article  CAS  Google Scholar 

  10. V. Kalkis, R. D. Maksimov, J. Zicans, and O. Revjakin, “Effect of the addition of liquid-crystalline copolyester upon properties of radiation-modified thermosetting polymer materials,” in: Proc. Int. Conf. SDSMS-99, Panevezhys, Lithuania, September 17–19 (1999).

  11. W. Brostow, M. Hess, B. L. Lopez, and T. Sterzynski, “Blends of a longitudinal polymer liquid crystal with polycarbonate: relation of the phase diagram to mechanical properties,” Polymer,34, No. 17, 1551–1560 (1996).

    Article  Google Scholar 

  12. K. Engberg, O. Strömberg, J. Martinson, and U. W. Gedde, “Thermal and mechanical properties of injection molded liquid-crystalline polymer/amorphous polymer blends,” Polym. Eng. Sci.,34, No. 17, 1336–1345 (1994).

    Article  CAS  Google Scholar 

  13. R. D. Maksimov and T. Sterzynski, “Mechanical properties of blends of liquid crystalline copolyesters with polypropylene,” Mech. Compos. Mater.,30, No. 4, 318–324 (1994).

    Article  Google Scholar 

  14. M. T. Heino and J. V. Seppala, “Studies on compatibilization of blends of polypropylene and a thermotropic liquid-crystalline polymer,” J. Appl. Polym. Sci.,48, 1677–1678 (1993).

    Article  CAS  Google Scholar 

  15. W. Brostow and M. Hess, “Polymer liquid crystals and their blends: a hierarchy of structures,” Mater. Res. Soc. Symp.,255, 57–73 (1992).

    CAS  Google Scholar 

  16. R. D. Maksimov, T. Sterzynski, and J. Garbarczyk, “Structure and properties of injection molded blends of liquid crystal polymer (40 PET/60 PHB) with poly(butylene terephthalate),” Mech. Compos. Mater.,32, No. 5, 473–482 (1996).

    Article  Google Scholar 

  17. J. Kubat and R. D. Maksimov, “Creep and stress relaxation,” in: W. Brostow (ed.), Mechanical and Thermophysical Properties of Polymer Liquid Crystals, Chapman and Hall, London—Weinheim—New York—Tokyo—Melbourne—Madras (1998), pp. 407–430.

    Google Scholar 

  18. A. Stein de Vilchez, W. Brostow, R. Maksimov, and M. N. Girardi, “Pressure-volume-temperature relations of polypropylene + polymer liquid crystal blends,” in: Proc. Annual Techn. Conf. Soc. Plastics Engs., New York, May (1999), pp. 1605–1609.

  19. W. J. Jackson and H. F. Kuhfuss, “Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters,” J. Polym. Sci.: Polymer Chem. Ed.,14, 2043–2058 (1976).

    Article  CAS  Google Scholar 

  20. W. Brostow, “Properties of polymer liquid crystals: choosing molecular structures and blending,” Polymer,31, 979–995 (1990).

    Article  Google Scholar 

  21. W. Brostow, M. Hess, and B.L. Lopez, “Phase structures and phase diagrams in polymer liquid-crystal systems: copolymers of poly(ethylene terephthalate) and p-hydroxybenzoic acid,” Macromolecules,27, No. 8, 2262–2269 (1994).

    Article  CAS  Google Scholar 

  22. R. D. Maksimov, “Effect of temperature on the creep of a thermotropic liquid crystalline polymer,” Mech. Compos. Mater.,31, No. 2, 119–125 (1995).

    Article  Google Scholar 

  23. J. M. Berry, W. Brostow, and M. Hess, “P-V-T relations in a series of longitudinal polymer liquid crystals with varying mesogen concentration,” Polymer,39, No. 17, 4081–4088 (1998).

    Article  CAS  Google Scholar 

  24. W. Brostow, N. A. D’Souza, J. Kubat, and R. Maksimov, “Creep and stress relaxation in a longitudinal polymer liquid crystal: prediction of the temperature shift factor,” J. Chem. Phys.,110, No. 19, 9706–9712 (1999).

    Article  CAS  Google Scholar 

  25. V. Kalkis, M. Kalnins, and Ya. Zitsans, “Application of the ultrasonic method for the control of thermosetting polymer materials,” Mech. Compos. Mater.,33, No. 3, 282–292 (1997).

    Article  CAS  Google Scholar 

  26. M. R. Nobile, E. Amendola, L. Nicolais, D. Acierno, and C. Carfagna, “Physical properties of blends of polycarbonate and a liquid-crystalline copolyester,” Polym. Eng. Sci.,29, No. 4, 244–257 (1989).

    Article  CAS  Google Scholar 

  27. V. Kalkis, R. D. Maksimovs, J. Zicans, T. Bocoka, O. Revjakins, “Thermosetting materials obtained by radiation modification of polymer compositions. 2. Creation of active and thermostable thermosetting materials,” Latvijas kimijas zhurnals [in Latvian], No. 4, 79–90 (1999).

  28. V. G. Kulichikhin and N. A. Plate, “Composite blends based on liquid-crystalline thermoplastics,” Vysokomol. Soed.,33A, No. 1, 3–38 (1991).

    Google Scholar 

  29. V. A. Bernshtein and V. M. Egorov, Differential Scanning Calorimetry in Physical Chemistry of Polymers [in Russian], Khimiya, Leningrad (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 379–394, May–June, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalkis, V., Maksimov, R.D., Kalnins, M. et al. Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products. Mech Compos Mater 36, 223–232 (2000). https://doi.org/10.1007/BF02681874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681874

Keywords

Navigation