Skip to main content
Log in

Environmental fatigue of an Al-Li-Cu alloy: part I. Intrinsic crack propagation kinetics in hydrogenous environments

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Deleterious environmental effects on steady-state, intrinsic fatigue crack propagation (FCP) rates(da/dN) in peak-aged Al-Li-Cu alloy 2090 are established by electrical potential monitoring of short cracks with programmed constant ΔK andK maxI loading. Such rates are equally unaffected by vacuum, purified helium, and oxygen but are accelerated in order of decreasing effectiveness by aqueous 1 pct NaCl with anodic polarization, pure water’ vapor, moist air, and NaCl with cathodic polarization. Whileda/dN depend on ΔK4.0 for the inert gases, water vapor and chloride induce multiple power laws and a transition growth rate “plateau.” Environmental effects are strongest at low ΔK. Crack tip damage is ascribed to hydrogen embrittlement because of acceleratedda/dN due to parts-per-million (ppm) levels of H2O without condensation, impeded molecular flow model predictions of the measured water vapor pressure dependence ofda/dN as affected by mean crack opening, the lack of an effect of film-forming O2, the likelihood for crack tip hydrogen production in NaCl, and the environmental and ΔK-process zone volume dependencies of the microscopic cracking modes. For NaCl, growth rates decrease with decreasing loading frequency, with the addition of passivating Li2CO3 and upon cathodic polarization. These variables increase crack surface film stability to reduce hydrogen entry efficiency. Small crack effects are not observed for 2090; such cracks do not grow at abnormally high rates in single grains or in NaCl and are not arrested at grain boundaries. The hydrogen environmental FCP resistance of 2090 is similar to other 2000 series alloys and is better than 7075.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., MCEP Ltd., Birmingham, United Kingdom, 1989, vols. I, II, and III.

    Google Scholar 

  2. Aluminum Alloys—Physical and Mechanical Properties Vols. I and II, E.A. Starke, Jr. and T.H. Sanders, Jr., eds., EMAS Ltd., Warley, West Midlands, United Kingdom 1986.

    Google Scholar 

  3. Aluminum-Lithium Alloys III, C. Barker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, Oxford, United Kingdom, 1986.

    Google Scholar 

  4. Aluminum-Lithium Alloys II, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1984.

    Google Scholar 

  5. Aluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1981.

    Google Scholar 

  6. K.T.V. Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1989, vol. 20A, pp. 485–97.

    CAS  Google Scholar 

  7. J. Glazer, S.L. Verzasconi, R.R. Sawtell, and J.W. Morris, Jr.;Metall. Trans. A, 1987, vol. 18A, pp. 1695–1701.

    CAS  Google Scholar 

  8. S. Suresh, A.K. Vasudevan, M. Tosten, and P.R. Howell:Acta Metall., 1987, vol. 35, pp. 25–46.

    Article  CAS  Google Scholar 

  9. R.C. Dorward:Scripta Metall., 1986, vol. 20, pp. 1379–83.

    Article  CAS  Google Scholar 

  10. R.G. Buchheit, J.P. Moran, and G.E. Stoner:Corrosion, 1990, vol. 46, pp. 610–17.

    CAS  Google Scholar 

  11. C. Kumai, J. Kusinski, G. Thomas, and T.M. Devine:Corrosion, 1989, vol. 45, pp. 294–302.

    CAS  Google Scholar 

  12. E.L. Colvin, G.L. Chen, Jr., G.E. Stoner, and E.A. Starke, Jr.:Corrosion, 1986, vol. 42, pp. 416–21.

    CAS  Google Scholar 

  13. P. Niskanen, T.H. Snders, Jr., J.G. Rinker, and M. Marek:Corros. Sci., 1982, vol. 22, pp. 283–304.

    Article  CAS  Google Scholar 

  14. J.G. Craig, R.C. Newman, M.R. Jarrett, and N.J.H. Holroyd:J. Phys. Colloq. C3, 1987, suppl. 9, paper 48, pp. 825–33.

  15. J.B. Lumsden and A.T. Allen:Corrosion, 1988, vol. 44, pp. 527–32.

    CAS  Google Scholar 

  16. R.C. Dorward and K.R. Hasse:Corrosion, 1988, vol. 44 (12), pp. 932–41.

    CAS  Google Scholar 

  17. A.K. Vasudevan, P.E. Bretz, A.C. Miller, and S. Suresh:Mater. Sci. Eng., 1984, vol. 64, pp. 113–22.

    Article  CAS  Google Scholar 

  18. K.T. Venkateswara Rao, R.S. Piascik, R.P. Gangloff, and R.O. Ritchie: inAluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publications Ltd., Birmingham, United Kingdom, 1989, pp. 955–71.

    Google Scholar 

  19. K.V. Jata and E.A. Starke, Jr.:Metall. Trans A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

  20. K.T.V. Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1988, vol. 19A, pp. 549–61.

    CAS  Google Scholar 

  21. K.T.V. Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1988, vol. 19A, pp. 563–69.

    CAS  Google Scholar 

  22. N.J.H. Holroyd: inEnvironment Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 311–46.

    Google Scholar 

  23. R.P. Gangloff: inEnvironment Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 55–109.

    Google Scholar 

  24. J.A. Feeney, J.C. McMillan, and R.P. Wei,Metall. Trans., 1970, vol. 1, pp. 1741–57.

    Article  CAS  Google Scholar 

  25. T.H. Shih and R.P. Wei:Eng. Fract. Mech., 1983, vol. 18, pp. 827–37.

    Article  Google Scholar 

  26. J.C. Radon:Met. Sci., 1979, July, pp. 411–19.

    Google Scholar 

  27. M. Gao, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1988, vol. 19A, pp. 1739–50.

    CAS  Google Scholar 

  28. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir, and G.W. Simmons:Metall. Trans. A, 1980, vol. 11A, pp. 151–58.

    CAS  Google Scholar 

  29. J. Petit and A. Zeghloul: inEnvironmentally Assisted Cracking: Science and Engineering, ASTM-STP 1049, W.B. Lisagor, T.W. Crooker, and B.N. Leis, eds., ASTM, Philadelphia, PA, 1989, pp. 334–46.

    Google Scholar 

  30. F.J. Bradshaw and C. Wheeler:Int. J. Fract. Mech., 1969, vol. 5, pp. 255–68.

    Google Scholar 

  31. R.E. Stoltz and R.M. Pelloux:Metall. Trans., 1972, vol. 3, pp. 2433–41.

    Article  CAS  Google Scholar 

  32. N.J.H. Holroyd and D. Hardie:Corros. Sci., 1983, vol. 23 (6), pp. 527–46.

    Article  CAS  Google Scholar 

  33. M.O. Speidel, M.J. Blackburn, T.R. Beck, and J.A. Feeney: inCorrosion Fatigue, Chemistry, Mechanics and Microstructure, O. Devereux, A.J. McEvily, and R.W. Staehle, eds., NACE, Houston, TX, 1972, pp. 324–45.

    Google Scholar 

  34. A.M. Green and J.F. Knott: inAdvances in Fracture Research, K. Salama, K. Ravi-Chandar, D.M.R. Taplin, and P. Rama Rao, eds., Pergamon Press, New York, NY, 1989, pp. 1747–56.

    Google Scholar 

  35. F.S. Lin and E.A. Starke, Jr.: inHydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 485–92.

    Google Scholar 

  36. F.S. Lin and E.A. Starke, Jr.:Mater. Sci. Eng., 1980, vol. 43, pp. 65–76.

    Article  CAS  Google Scholar 

  37. R.E. Ricker and D.J. Duquette:Metall. Trans. A, 1988, vol. 19A, pp. 1775–83.

    CAS  Google Scholar 

  38. A. Niegel, H.-J. Gudladt, and V. Gerold: inFatigue ’87, R.O. Ritchie and E.A. Starke, Jr., eds., EMAS, West Midlands, United Kingdom, 1987, pp. 1229–38.

    Google Scholar 

  39. A. Niegel, H.-J. Gudladt, and V. Gerold:J. Phys. Colloq. C5, 1988, vol. 49, pp. 659–63.

    Google Scholar 

  40. R.P. Wei and R.P. Gangloff: inFracture Mechanics: Perspectives and Directions, ASTM STP 1020, R.P. Wei and R.P. Gangloff, eds., ASTM, Philadelphia, PA, 1989, pp. 233–64.

    Google Scholar 

  41. F.P. Ford:Corrosion, 1979, vol. 35, pp. 281–87.

    CAS  Google Scholar 

  42. N.M. Grinberg:Int. J. Fract., 1982, April, pp. 83–95.

    Google Scholar 

  43. A.K. Vasudevan and P.E. Bretz:Fatigue Crack Growth Threshold Concepts, D. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 25–42.

    Google Scholar 

  44. R.P. Gangloff and R.O. Ritchie: inFundamentals of Deformation and Fracture, B.A. Bilby, K.J. Miller, and J.R. Willis, eds., Cambridge University Press, Cambridge, United Kingdom, 1985, pp. 529–58.

    Google Scholar 

  45. N.J.H. Holroyd, A.K. Vasudevan, and L. Christodoulou: inTreatise on Materials Science and Technology, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Boston, MA, 1989, vol. 31, pp. 463–83.

    Google Scholar 

  46. J.P. Moran: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1990.

    Google Scholar 

  47. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley: inAluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., MCEP Ltd., Birmingham, United Kingdom, 1989, pp. 1033–37.

    Google Scholar 

  48. P.S. Pao, M.A. Imam, L.A. Cooley, and G.R. Yoder:Corrosion, 1989, vol. 45, pp. 530–35.

    CAS  Google Scholar 

  49. K.S. Shin and S.S. Kim: inEffects of Hydrogen on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1990, pp. 919–28.

    Google Scholar 

  50. K.S. Shin and E.W. Lee: inLight Weight Alloys for Aerospace Applications, E.W. Lee, E.H. Chia, and N.J. Kim, eds., TMS-AIME, Warrendale, PA, 1989, pp. 171–79.

    Google Scholar 

  51. J.K. Donald: Fracture Technology Associates, Springtown, PA, unpublished research, 1989.

  52. W.A. Herman, R.W. Hertzberg, and R. Jaccard:Fatigue Eng. Mater. Struct., 1988, vol. 11, pp. 303–20.

    Article  Google Scholar 

  53. R.P. Gangloff:Metall. Trans. A, 1985, vol. 16A, pp. 953–69.

    CAS  Google Scholar 

  54. R.S. Piascik: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1990.

    Google Scholar 

  55. R.S. Piascik and R.P. Gangloff: inAdvances in Fracture Research, K. Salama, K. Ravi-Chandar, D.M.R. Taplin, and P. Rama Rao, eds., Pergamon Press, New York, NY, 1989, pp. 907–18.

    Google Scholar 

  56. R.S. Piascik and R.P. Gangloff: inEnvironmental Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 233–40.

    Google Scholar 

  57. R.S. Piascik and R.P. Gangloff: University of Virginia, Charlottesville, VA, unpublished research, 1991.

  58. H. Tada, P.C. Paris, and G.R. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corp., St. Louis, MO, 1987, pp. 2–10.

    Google Scholar 

  59. R.O. Ritchie and J. Lankford: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 1–5.

    Google Scholar 

  60. R.P. Gangloff: inAdvances in Crack Length Measurement, C.J. Beevers, ed., EMAS, Ltd., Warley, West Midlands, United Kingdom, 1982, pp. 175–229.

    Google Scholar 

  61. R.P. Gangloff, D.C. Slavik, R.S. Piascik, and R.H. Van Stone: inSmall Crack Test Methods, ASTM STP 1149, J.M. Larsen and J.E. Allison, eds., ASTM, Philadelphia, PA, in press.

  62. R.P. Gangloff:Fatigue Eng. Mater. Struct., 1981, vol. 4 (1), pp. 15–33.

    Article  CAS  Google Scholar 

  63. J.W. Swanson and H.L. Marcus:Metall. Trans. A, 1978, vol. 6A, pp. 291–93.

    Google Scholar 

  64. R.M.N. Pelloux:Trans. ASM, 1969, vol. 62, pp. 281–85.

    CAS  Google Scholar 

  65. D.A. Meyn:Trans. ASM, 1968, vol. 61, pp. 52–61.

    Google Scholar 

  66. R.P. Wei:Int. J. Fract. Mech., 1968, vol. 4, pp. 159–70.

    Google Scholar 

  67. D.J. Shaw:Introduction to Colloid and Surface Chemistry, Butterworth’s, Boston, MA. 1980.

    Google Scholar 

  68. P.S. Pao, Ming Gao, and R.P. Wei: inBasic Questions in Fatigue: Vol. II, ASTM 924, W.P. Wei and R.P. Gangloff, eds., ASTM, Philadelphia, PA, 1988, pp. 182–95.

    Google Scholar 

  69. D.L. Dicus: inEnvironment-Sensitive Fracture: Evaluation and Comparison of Test Methods, ASTM STP 821, S.W. Dean, E.N. Pugh, and G.M. Ugiansky, eds., ASTM, Philadelphia, PA, 1984, pp. 513–33.

    Google Scholar 

  70. Jing Gui and T.M. Devine:Scripta Metall., 1987, vol. 21, pp. 853–57.

    Article  CAS  Google Scholar 

  71. R.G. Buchheit, F.D. Wall, G.E. Stoner, and J.P. Moran:Corrosion 91, NACE, Houston, TX, 1991, paper no. 99.

    Google Scholar 

  72. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Scripta Metall., 1982, vol. 16, pp. 1021–25.

    Article  Google Scholar 

  73. G.R. Yoder, L.A. Cooley, and T.W. Crooker: inFract. Mech.: 14th Symp., ASTM STP 791, J.C. Lewis and G. Sines, eds., ASTM, Philadelphia, PA, 1983, vol. 1, pp. 348–65.

    Google Scholar 

  74. G.R. Yoder, L.A. Cooley, and T.W. Crooker: inTitanium 80, Proc. 4th Int. Conf. on Titanium, H. Kimura and O. Izumi, eds., AIME, Warrendale, PA, 1981, vol. 3, pp. 1865–74.

    Google Scholar 

  75. R.J.H. Wanhill: inShort Crack Behavior in an Aluminum Alloy—An AGARD Cooperative Test Program, J.C. Newman, Jr. and P.R. Edwards, eds., AGARD Report No. AGARD-R-732, Annex A, Paris, France, 1989.

    Google Scholar 

  76. G.G. Garrett and J.F. Knott:Acta Metall., 1975, vol. 23, pp. 841–48.

    Article  CAS  Google Scholar 

  77. A.J. McEvily and R.P. Wei: inCorrosion Fatigue: Chemistry, Mechanics and Microstructure, O. Devereux, A.J. McEvily, and R.W. Staehle, eds., NACE, Houston, TX, 1972, pp. 381–95.

    Google Scholar 

  78. D. Aliaga and E. Budillon:Corrosion Fatigue Behavior of Some Aluminum Alloys, AGARD Report No. AGARD-CP-616, Paris, France, 1981.

  79. R.J. Selines and R.M. Pelloux:Metall. Trans., 1972, vol. 3, pp. 2525–31.

    Article  CAS  Google Scholar 

  80. D.L. Davidson and J. Lankford: inFatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP 811, J. Lankford, D.L. Davidson, W.L. Morris, and R.P. Wei, eds., ASTM, Philadelphia, PA, 1983, pp. 371–99.

    Google Scholar 

  81. D.L. Davidson and J. Lankford:Mater. Sci. Eng., 1985, vol. 74, pp. 189–99.

    Article  CAS  Google Scholar 

  82. Atlas of Electrochemical Equilibria in Aqueous Solutions, M. Pourbaix, ed., NACE, Houston, TX, 1974, pp. 168–76.

    Google Scholar 

  83. F.D. Bogar and T.W. Crooker: NRL Report 8153, Naval Research Laboratory, Washington, DC, 1977.

    Google Scholar 

  84. Markus O. Speidel:Metall. Trans. A, 1975, vol. 6A, pp. 631–51.

    CAS  Google Scholar 

  85. R.P. Wei, Ming Gao, and P.S. Pao:Scripta Metall., 1984, vol. 18, pp. 1195–98.

    Article  CAS  Google Scholar 

  86. N.J.H. Holroyd and G.M. Seamans:Scripta Metall., 1985, vol. 19, pp. 915–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

ROBERT S. PIASCIK formerly Graduate Student, Department of Materials Science, University of Virginia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piascik, R.S., Gangloff, R.P. Environmental fatigue of an Al-Li-Cu alloy: part I. Intrinsic crack propagation kinetics in hydrogenous environments. Metall Trans A 22, 2415–2428 (1991). https://doi.org/10.1007/BF02665008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665008

Keywords

Navigation