Skip to main content
Log in

Combustion synthesis and subsequent Explosive Densification of Titanium Carbide Ceramics

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Explosive densification following combustion synthesis of titanium and graphite powder mixtures has been used to fabricate bulk compacts (100-mm diameter × 20-mm thick) of TiC ceramics. A model rocket ignitor was used to initiate the combustion reaction in ≈65 pct dense green pressed reactants of titanium and carbon powder mixtures. Upon completion of reaction, the reacted mass was allowed to cool. After the desired time delay (t d) and while the reacted mass was still above the ductile-brittle transition temperature, an explosive charge was detonated in contact with a steel driver plate to transmit the pressure into the reacted mass and consolidate it to solid density. Temperature-time cooling profiles for the reacted material were developed using calculations based on a heat flow model. The explosive loading conditions, namely, the densification pressure controlled by the ratio of explosive charge mass (C) to driver plate mass (M) ratio (C/M) and thet d between the combustion reaction completion and explosive detonation, were observed to critically affect the density and the microstructure of the final compacted reaction product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.A. Munir and U. Anselmi-Tamburini:Mater. Sci. Rep., 1989, vol. 3 (7,8), p. 277.

    Article  CAS  Google Scholar 

  2. W.L. Frankhouser, K.W. Brendley, M.G. Kieszek, and S.T. Sullivan:Gasless Combustion Synthesis of Refractory Compounds, Noyes Publication, Park Ridge, NJ, 1985, p. 1.

    Google Scholar 

  3. N.N. Thadhani:Adv. Mater. Manuf. Proc, 1988, vol. 4 (4), p. 493.

    Google Scholar 

  4. R.A. Graham and A.B. Sawaoka: inHigh Pressure Explosive Processing of Ceramics, R.A. Graham and A.B. Sawaoka, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1987, p. 17.

    Google Scholar 

  5. E.K. Beauchamp: inHigh Pressure Explosive Processing of Ceramics, R.A. Graham and A.B. Sawaoka, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1987, p. 139.

    Google Scholar 

  6. A. Niiler, L.J. Kecskes, T. Kottke, P. Netherwood, Jr., and R.F. Benck: Ballistics Research Laboratory Report BRL-TR-2951, Aberdeen Proving Ground, MD, Dec. 1988, p. 11.

  7. J.B. Holt:Met. Res. Soc. Bull., 1987, vol. 12 (7), p. 60.

    Article  CAS  Google Scholar 

  8. Y. Chiang, J.S. Haggerty, R.P. Messner, and C. Demetry:Ceramic Bull., 1989, vol. 68 (2), p. 425.

    Google Scholar 

  9. Z.A. Munir:Ceram. Bull., 1988, vol. 67 (2), p. 342.

    CAS  Google Scholar 

  10. A.G. Merzhanov and A.E. Averson:Combust. Flame, 1971, vol. 16, p. 89.

    Article  CAS  Google Scholar 

  11. J.B. Holt and Z.A. Munir:J. Mater. Sci., 1986, vol. 21, p. 251.

    Article  CAS  Google Scholar 

  12. A.P. Hardt and P.V. Phung:Combust. Flame, 1973, vol. 21, p. 77.

    Article  CAS  Google Scholar 

  13. T. Kottke, L.J. Kecskes, and A. Niiler: inProc. Int. Symp. on Combustion Synthesis of High Temperature Materials, VCH Publishers, New York, NY, 1990, p. 238.

    Google Scholar 

  14. L.J. Kecskes and A. Niiler:J. Am. Ceram. Soc., 1989, vol. 72 (4), p. 655.

    Article  CAS  Google Scholar 

  15. B.H. Rabin, G.E. Korth, and R.L. Williamson:J. Am. Ceram. Soc., 1990, vol. 73 (7), p. 2156.

    Article  CAS  Google Scholar 

  16. A.H. Advani, N.N. Thadhani, H.A. Grebe, R.A. Heaps, and C. Coffin:Scripta Metall., 1991, vol. 25 (6), p. 1447.

    Article  CAS  Google Scholar 

  17. A.H. Advani, N.N. Thadhani, H.A. Grebe, R.A. Heaps, and C. Coffin:J. Mater. Sci., 1992, vol. 27, p. 3309.

    Article  CAS  Google Scholar 

  18. L.J. Kesckes, T. Kottke, and A. Niiler:J. Am. Ceram. Soc., 1990, vol. 73 (5), p. 1274.

    Article  Google Scholar 

  19. Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, p. 1045.

  20. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter: inHigh-Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York, NY, 1970, p. 293.

    Chapter  Google Scholar 

  21. A.G. Merzhanov: inCombustion and Plasma Synthesis of High-Temperature Materials, Z.A. Munir and J.B. Holt, eds., VCH Publishers, New York, NY, 1990, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Reaction Synthesis of Materials” presented during the TMS Annual Meeting, New Orleans, LA, February 17–21, 1991, under the auspices of the TMS Powder Metallurgy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebe, H.A., Advani, A., Thadhani, N.N. et al. Combustion synthesis and subsequent Explosive Densification of Titanium Carbide Ceramics. Metall Trans A 23, 2365–2372 (1992). https://doi.org/10.1007/BF02658038

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658038

Keywords

Navigation