Skip to main content
Log in

Effect of oxygen on hydrogen cracking in high-strength weld metal

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of oxygen content on the susceptibility of high-strength weld metal to hydrogen cracking is examined. Increasing oxygen content had a detrimental effect on the cracking susceptibility of weld metal containing a dψusible hydrogen content of 4.7 ppm. In weld metal containing a much lower dψusible hydrogen content (0.87 ppm), increasing weld metal oxygen content had no detrimental effect on hydrogen cracking susceptibility. These results are explained by a model which proposes that hydrogen cracking occurs when a critical oxide inclusion density promotes intergranular fracture at prior austenite grain boundaries and when a critical level of hydrogen is present in the weld metal. For the same level of hydrogen (moisture) contamination, high-strength weld metals containing oxygen contents greater than 200 ppm will be much more susceptible to hydrogen cracking than deposits made using inert gas-shielded or vacuum-operated welding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α 1 :

coefficient of thermal expansion of the inclusion

α 2 :

coefficient of thermal expansion of the matrix

τ :

temperature change involved

Ó c :

circumferential stress

Ó r :

radial stress

d :

ratio ofR 1 toR 2

R 1 :

radius of the inclusion

R 2 :

outer radius of the matrix shell associated with the inclusion

ν 1 :

Poisson’s ratio of the inclusion

ν 2 :

Poisson’s ratio of the matrix

E 1 :

Young’s modulus of the inclusion

E 2 :

Young’s modulus of the matrix

d 1 :

volume fraction of inclusions

References

  1. F. Matsuda, H. Nakagawa, and K. Shinozaki:Trans. Jpn. Weld. Res. Inst., 1979, vol. 8, p. 113.

    CAS  Google Scholar 

  2. F. Matsuda, H. Nakagawa, and K. Shinozaki: Int. Inst. Weld. Doc, 1X-1403-86, 1986.

  3. P. Holsberg:Proc. World Materials Conf. Marine Military and Pressure Vessels, Chicago, IL, Sept. 1988.

  4. T.W. Montemarano, B.P. Sack, J.P. Gudas, M.G. Vassilaros, and H.H. Vanderveldt:J. Ship Prod., 1986, vol. 2, p. 145.

    Google Scholar 

  5. G.M. Pressouyre and I.M. Bernstein:Metall. Trans. A, 1981, vol. 12A, pp. 835–44.

    Google Scholar 

  6. G.M. Pressouyre:Acta Metall., 1980, vol. 20, p. 895.

    Google Scholar 

  7. H. Hargi, Y. Hayashi, and N. Ohtani:Trans. Jpn. Inst. Met., 1979, vol. 20, p. 349.

    Google Scholar 

  8. J.-L. Lee and J.-Y. Lee:Metall. Sci., 1983, vol. 17, p. 426.

    Article  CAS  Google Scholar 

  9. G.M. Pressouyre and C. Zmudminski:Proc. Conf. on Mechanical Working and Steel Processing XVIII, AIME, New York, NY, 1981.

    Google Scholar 

  10. J.-L. Lee and J.-Y. Lee:Metall. Trans. A, 1986, vol. 17A, pp. 2183–86.

    CAS  Google Scholar 

  11. K.Y. Lee and J.-Y. Lee:Mater. Sci. Eng., 1984, vol. 6, p. 213.

    Google Scholar 

  12. A.A.B. Sugden and H.K.D.H. Bhadeshia:Metall. Trans. A, 1988, vol. 19A, pp. 669–74.

    CAS  Google Scholar 

  13. O. Grong, T.A. Siewert, G.P. Martins, and D.L. Olson:Metall. Trans. A, 1986, vol. 17A, pp. 1797–1807.

    CAS  Google Scholar 

  14. J. Burkhardt, T. Lau, T.H. North, and G.L. L’Esperance:Weld. J., 1988, vol. 66, p. 87.

    Google Scholar 

  15. R.B. Cochrane, J.L. Ward, and B.R. Keville:Proc. Conf. Effect of Residual and Microalloying Elements on Weldability and Weld Properties,The Welding Institute, London, Nov., 1983.

    Google Scholar 

  16. D. Abson and R.E. Dolby:Weld. Res. Bull., 1978, vol. 19, p. 202.

    Google Scholar 

  17. F. Matsuda, H. Nakagawa, and K. Shinozaki:Trans. Jpn. Weld. Res. Inst., 1978, vol. 7, p. 135.

    Google Scholar 

  18. F. Kurozawa, I. Taguchi, and R. Masumoto:J. Jpn. Inst. Met., 1979, vol. 43, p. 1068.

    Google Scholar 

  19. C.D. Beachem:Metall. Trans., 1972, vol. 3, p. 437.

    CAS  Google Scholar 

  20. D. Brooksbank and K.W. Andrews:J. Iron Steel Inst., 1972, vol. 210, p. 246.

    CAS  Google Scholar 

  21. D. Brooksbank and K.W. Andrews:J. Iron Steel Inst., 1970, vol. 208, p. 582.

    CAS  Google Scholar 

  22. A.R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  23. W. Beck, J.M. O’Brien, and L. Nanis:Proc. R. Soc., 1966, vol. A290, p. 220.

    Google Scholar 

  24. T. Tabata and H.K. Birnbaum:Scripta Metall., 1984, vol. 18, p. 231.

    Article  CAS  Google Scholar 

  25. T.P. Pemg and C.J. Altstetter:Metall. Trans. A, 1987, vol. 18A, p. 123.

    Google Scholar 

  26. F. Matsuda, K. Nakagawa, and Y. Morimoto:Trans. Jpn. Weld. Res. Inst., 1986, vol. 7, p. 87.

    Google Scholar 

  27. J.M. Dowling, J.M. Corbett, and H.W. Kerr:Metall. Trans. A, 1986, vol. 17A, pp. 1611–23.

    CAS  Google Scholar 

  28. L. Devillers, D. Kaplan, A. Ribes, and P.V. Riboud: IRSID Report 81.S.0660, Oct. 1981.

  29. S.G. Court and G. Pollard:J. Mater. Sci. Lett., 1985, vol. 4, p. 427.

    Article  CAS  Google Scholar 

  30. G.M. Evans:Metall. Constr., 1986, vol. 18, p. 631R.

    CAS  Google Scholar 

  31. X. Mao, H. Nakagawa, and T.H. North: University of Toronto, Toronto, ON, Canada, unpublished research, 1989.

  32. P.H.M. Hart:Trends in Steels and Consumables for Welding, Proc. Conf., The Welding Institute, London, Nov. 1984.

    Google Scholar 

  33. N. Yurioka, M. Koike, N. Mori, and K. Nagano: Int. Inst. Weld. Doc. 1X-1313-84, 1984, p. 11.

  34. Z. Wenyue, Q. Boxiong, C. Banguu, and D. Zevu:Weld. Res. Rev., Tianjin University, Tianjin, China, 1987.

    Google Scholar 

  35. F. Nakasato and F. Terasaki:J. Jpn. Met., 1975, vol. 38, p. 667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Visiting Scientist, Department of Metallurgy and Materials Science, University of Toronto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinozaki, K., Wang, X. & North, T.H. Effect of oxygen on hydrogen cracking in high-strength weld metal. Metall Trans A 21, 1287–1298 (1990). https://doi.org/10.1007/BF02656545

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656545

Keywords

Navigation