Skip to main content
Log in

Modeling of collision and coalescence of droplets during microgravity processing of Zn-Bi immiscible alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A population balance model is presented for the coarsening of the dispersed phase of liquid-liquid two-phase mixtures in microgravity due to gravity sedimentation and Marangoni migration, which lead to the collision and coalescence of droplets. The model is used to predict the evolution of the size distribution of the dispersed phase in a liquid-phase miscibility gap system, Zn-Bi, which has been used in a number of experimental microgravity processing studies in which significant phase segregation has been observed. The analysis shows that increasing the temperature gradient, gravity level, volume fraction of the dispersed phase, initial average drop radius, initial standard deviation of droplet radii, or the temperature coefficient of the interfacial tension leads to an increase in the rate of droplet growth due to collision and coalescence. Comparison of the distribution evolutions for unimodal and bimodal initial distributions shows that the latter yield significantly more rapid droplet growth. Finally, it is shown that droplet growth can be dramatically reduced with antiparallel orientation of the gravity vector and the temperature gradient, provided that the relative magnitude of these two vectors is properly chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.U. Walter:ESA Spec. Publ. 219, 1984, pp. 47–64.

    Google Scholar 

  2. B. Predel, L. Ratke, and H. Fredriksson: inFluid Sciences and Materials Science in Space: A European Perspective, H.U. Walter, ed., Springer-Verlag, New York, NY, 1987, pp. 517–65.

    Google Scholar 

  3. H.U. Walter: inMaterials Sciences in Space, B. Feuerbacher, H. Hamacher, and R.J. Naumann, eds., Springer-Verlag, New York, NY, 1986, pp. 343–78.

    Google Scholar 

  4. J.M. Reger: Interim Report on NASA Contract NAS8-28267, TRW Systems Group, Redondo Beach, CA, May 1973.

    Google Scholar 

  5. H. Ahlborn and K. Lohberg:17th AIAA Conference, New Orleans, LA, 1974, Paper No. 74–208.

  6. L.L. Lacy and G.H. Otto:AIAA J., 1975, vol. 13, pp. 219–20.

    Article  CAS  Google Scholar 

  7. T. Carlberg and H. Fredriksson:Metall. Trans. A, 1980, vol. 11 A, pp. 1665–76.

    Google Scholar 

  8. H. Fredriksson:ESA Spec. Publ. 219, 1984, pp. 25–34.

    Google Scholar 

  9. A. Kneissel, P. Pfefferkorn, and H. Fischmeister:ESA Spec. Publ. 191, 1983, pp. 55–62.

    Google Scholar 

  10. S.H. Gelles, A.J. Markworth, and C.E. Mobley:ESA Spec. Publ. 191, 1983, pp. 307–12.

    Google Scholar 

  11. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–51.

    Article  Google Scholar 

  12. J.S. Langer and A.J. Schwartz:Phys. Rev. A, 1980, vol. 21, pp. 948–58.

    Article  CAS  Google Scholar 

  13. H. Lamb:Hydrodynamics, 6th ed., Dover, New York, NY, 1932, p. 601.

    Google Scholar 

  14. N.O. Young, J.S. Goldstein, and M.J. Block:J. Fluid Mech., 1959, vol. 6, pp. 350–56.

    Article  Google Scholar 

  15. ESA Spec. Publ. 219, 1984, pp. v–ix.

  16. A. Bergman and H. Fredriksson: inMaterials Processing in the Reduced Gravity Environment of Space, G. Rindone, ed., North Holland, New York, NY, 1982, pp. 564–78.

  17. B.C. Allen: inLiquid Metals: Physics and Chemistry, S. Beer, ed., Marcel Dekker, Inc., New York, NY, 1972, pp. 161–204.

    Google Scholar 

  18. L. Ratke:J. Colloid Interface Sci., 1987, vol. 119, pp. 391–97.

    Article  CAS  Google Scholar 

  19. R.H. Davis:J. Fluid Mech., 1984, vol. 145, pp. 179–99.

    Article  CAS  Google Scholar 

  20. X.E. Berry:J. Atmos. Sci., 1967, vol. 24, pp. 688–701.

    Article  Google Scholar 

  21. X.E. Berry and R.L. Reinhardt:J. Atmos. Sci., 1974, vol. 31, pp. 1814–31.

    Article  Google Scholar 

  22. W.K. Witherow and B.R. Facemire:J. Colloid Interface Sci., 1985, vol. 104, pp. 185–92.

    Article  CAS  Google Scholar 

  23. D. Langbein:ESA Spec. Publ. 219, 1984, pp. 3–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, J.R., Davis, R.H. Modeling of collision and coalescence of droplets during microgravity processing of Zn-Bi immiscible alloys. Metall Trans A 21, 59–68 (1990). https://doi.org/10.1007/BF02656424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656424

Keywords

Navigation