Skip to main content
Log in

Thermal determination of hybrid nanofluid with molybdenum disulphide (MoS\(_{2}\)) and graphene oxide (GO) nanoparticles: AB fractional simulations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Hybrid nanomaterials have different applications and scientists have presented different methods to enhance the thermal efficiencies of cooling and heating systems, improving energy resources, thermal managements, extrusion processes, chemical reactions, etc. Current investigation reports a thermal study based on hybrid nanofluid model via fractional approach. The hybrid nanofluid contains molybdenum disulphide (MoS\(_2\)) and graphene oxide (GO) nanoparticles. Engine oil is used as a base liquid for which thermal properties need to be enhanced. Additionally, the impact of magnetic force is studied for electrically conducting hybrid nanofluid. Fractional computations are performed using Atanangana–Balenau (AB) fractional derivative, followed by the Laplace technique for integration assessment. The role of physical flow parameters is tested graphically. It is observed that the heat transfer phenomenon enhances due to nanoparticle volume fraction, the velocity profile declines due to Grashof number and skin friction coefficient increases due to fractional parameter and Grashof number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S U S Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: Developments and applications of non-Newtonian flows edited by D A Siginer and H P Wang, FED-Vol. 231/MD-Vol. 66 (ASME, New York, 1995) pp. 99–105

  2. A S Sabu et al, Int. Commun. Heat Mass Transf. 129, 105711 (2022)

    Article  Google Scholar 

  3. R N Kumar et al, Heat Mass Transf. 91, 111 (2022)

    Google Scholar 

  4. N Anjum et al, Case Stud. Therm. Eng. 39, 102427 (2022)

    Google Scholar 

  5. K Javid et al, Case Stud. Therm. Eng. 30, 101746 (2022)

    Google Scholar 

  6. H Upreti et al, Heat Transf. 50(7), 6572 (2021)

    Article  Google Scholar 

  7. N Joshi et al, Heat Transf. 50(4), 3661 (2021)

    Article  Google Scholar 

  8. H Upreti et al, Chin. J. Phys. 78, 234 (2022)

    Article  Google Scholar 

  9. A K Pandey et al, Alex. Eng. J. 56(1), 55 (2017)

    Article  Google Scholar 

  10. Hi Upreti et al, Heat Transf. 50(1), 105 (2021)

    Article  Google Scholar 

  11. W Xiu et al, Int. Commun. Heat Mass Transf. 137, 106241 (2022)

    Article  Google Scholar 

  12. W Cao et al, Int. Commun. Heat Mass Transf. 135, 106069 (2022)

    Article  Google Scholar 

  13. S Saleem et al, Surf. Interfaces 30, 101854 (2022)

    Article  Google Scholar 

  14. S Hussain et al, Appl. Math. Mech.-Engl. Ed. 43, 447 (2022)

    Article  Google Scholar 

  15. T Tayebi et al, J. Therm. Anal. Calorim. 143, 1399 (2021)

    Article  Google Scholar 

  16. Q Xiong et al, Sustain. Energy Technol. Assess. 47, 101404 (2022)

    Google Scholar 

  17. T Tayebi et al, Int. Commun. Heat Mass Transf. 126, 105397 (2021)

    Article  Google Scholar 

  18. T Tayebi et al, Int. J. Numer. Meth. Heat Fluid Flow 30(3), 1115 (2020)

    Article  Google Scholar 

  19. N S Khashi’ie et al, Symmetry 12, 1493 (2020)

    Article  ADS  Google Scholar 

  20. N S Khashi’ie et al, Sci. Rep. 11, 14128 (2021)

    Article  ADS  Google Scholar 

  21. I Waini et al, Mathematics 10, 1658 (2022)

    Article  Google Scholar 

  22. I Waini et al, Mathematics 9, 538 (2021)

    Article  Google Scholar 

  23. I Waini et al, Z. Angew Math. Mech. 101(6), e202000193 (2022)

    Article  MathSciNet  Google Scholar 

  24. P Kanti et al, Diam. Relat. Mater. 128, 109265 (2022)

    Article  ADS  Google Scholar 

  25. P Kanti et al, Part. Sci. Technol. 39, 597 (2021)

    Article  Google Scholar 

  26. P Kanti et al, Int. Commun. Heat Mass Transf. 124, 105238 (2021)

    Article  Google Scholar 

  27. P K Kanti et al, Part. Sci. Technol. 40, 182 (2022)

    Article  Google Scholar 

  28. P Kanti et al, Int. Commun. Heat Mass Transf. 129, 105731 (2022)

    Article  Google Scholar 

  29. S Dinarvand et al, Int. J. Numer. Methods H. 32(8), 2799 (2022)

    Article  Google Scholar 

  30. S M Mousavi et al, Chin. J. Phys. 71, 574 (2021)

    Article  Google Scholar 

  31. S M Mousavi et al, Heat Transf. 51, 4169 (2022)

    Article  Google Scholar 

  32. N Acharya, Mater. Today Commun. 38, 107844 (2024)

    Article  Google Scholar 

  33. S Dinarvand, Microsyst. Technol. 25, 2609 (2019)

    Article  Google Scholar 

  34. N Acharya, J. Magn. Magn. Mater. 589, 171612 (2024)

    Article  Google Scholar 

  35. B Fallah et al, J. Appl. Comput. Mech. 5(5), 976 (2019)

    Google Scholar 

  36. N Acharya et al, Numer. Heat Transf. 84(6), 586 (2023)

    Article  Google Scholar 

  37. N Acharya, J. Magn. Magn. Mater. 564, 170167 (2022)

    Article  Google Scholar 

  38. N Harrouche et al, Alex. Eng. J. 60(5), 4347 (2021)

    Article  Google Scholar 

  39. A Atangana et al, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  40. S K Panda et al, Chaos Solitons Fractals 142, 110390 (2021)

  41. A Raza et al, Case Stud. Therm. Eng. 27, 101191 (2021)

  42. A Raza et al, Chem. Phys. Lett. 787, 139277 (2022)

    Article  Google Scholar 

  43. A Raza et al, Chaos Solitons Fractals 155, 111708 (2022)

    Article  Google Scholar 

  44. M M Arjunan et al, Chaos Solitons Fractals 149, 111042 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ullah Khan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Ali, Q. & Adnan Thermal determination of hybrid nanofluid with molybdenum disulphide (MoS\(_{2}\)) and graphene oxide (GO) nanoparticles: AB fractional simulations. Pramana - J Phys 98, 70 (2024). https://doi.org/10.1007/s12043-024-02764-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02764-9

Keywords

PACS Nos

Navigation