Skip to main content
Log in

Optimization studies of CVD growth of GaAs0.6P0.4

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CVD growth conditions, particularly growth temperature and partial pressures of the reactant gases, strongly affect the growth characteristics and properties of GaAs0.6P0.4 epitaxial layers grown on GaAs substrates. For LED’s the most important properties of the material are B/J (brightness per unit current density) and surface morphology. This paper presents the results of a systematic study of the effect of temperature and reactant gas partial pressure (at a fixed III/V ratio) on B/J, surface morphology, growth rate, impurity doping and layer composition. Growth conditions which yield the optimum properties for LED’s are determined. The results are interpreted on the basis of kinetic and thermodynamic mechanisms controlling the growth process under various growth conditions. At constant temperature and constant III/V ratio, increasing the partial pressures causes the growth process to change from mass transport limited, where the growth rate increases with increasing partial pressures, to kinetically limited, where the growth rate is independent of partial pressures. Good morphology layers are obtained over a range of partial pressures around the transition from mass transport limited to kinetically limited growth. The B/J peaks at a value of partial pressure in the kinetically limited regime at which good morphology layers are obtained. Although B/J increases with increasing growth rate in the mass transport regime, the maximum B/J occurs in the region where growth rate is independent of partial pressures so that growth rate alone is not sufficient to determine B/J. In contrast to the “parabolic≓ dependence of growth rate on growth temperature, caused by the transition from the mass transport regime to the kinetic regime, the relative incorporation of As, P, and Te varies with temperature in the manner predicted from thermodynamics in both regimes. This behavior is consistent with the growth rate in the kinetic regime being limited by the desorption of chlorine atoms from the growth surface, with the reaction of As, P, and Te with the Ga proceeding thermodynamically at all temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Finch and E. W. Mehal, J. Electrochem. Soc.,111, 814 (1964).

    Article  CAS  Google Scholar 

  2. J. J. Tietjen and J. A. Amick, J. Electrochem Soc,113, 724 (1966).

    Article  CAS  Google Scholar 

  3. C. J. Nuese, J. J. Tietjen, J. J. Gannon and H. F. Gossenberger, J. Electrochem. Soc,116, 248 (1969).

    Article  CAS  Google Scholar 

  4. M. Ogirima and K. Kurata, Japanese J. Appl. Phys.,10, 1474 (1971).

    Article  CAS  Google Scholar 

  5. Chr. Belouet, J. Crystal Growth,13/14, 342 (1972).

    Article  Google Scholar 

  6. D. Shaw , in “Crystal Growth — Theory and Techniques”, Volume1, Chapter 1, edited by C. H. L. Goodman, Plenum Press (1974); also D. Shaw, J. Crystal Growth, 31, 130 (1975).

  7. D. Shaw, J. Electrochem. Soc,115, 405 (1968).

    Article  CAS  Google Scholar 

  8. D. Shaw, J. Electrochem. Soc,117, 683 (1970).

    Article  CAS  Google Scholar 

  9. V. S. Ban, J. Electrochem. Soc,118, 1473 (1971).

    Article  CAS  Google Scholar 

  10. D. J. Kirwan, J. Electrochem. Soc,117, 1572 (1970).

    Article  CAS  Google Scholar 

  11. N. Johnson, J. Electrochem. Soc,110, 117 (1963).

    Article  Google Scholar 

  12. R. D. Fergusson and T. Garbor, J. Electrochem. Soc, 111, 585 (1964).

    Article  CAS  Google Scholar 

  13. D. Wagman, et al., “Selected Values of Chemical Thermo-dynamic Properties”, National Bureau of Standards Technical Note 270-3, 219 (1965).

  14. H. Seki, K. Moriyama, I. Asakawa and S. Horie, Japanese J. Appl. Phys.,7, 1324 (1968).

    Article  CAS  Google Scholar 

  15. A. Boucher and L. Hollan, J. Electrochem. Soc,117, 932 (1970).

    Article  CAS  Google Scholar 

  16. T. Manabe, T. Gejyo and H. Seki, Japanese J. Appl. Phys.,10, 1466 (1971).

    Article  CAS  Google Scholar 

  17. M. Bleicher, J. Electrochem. Soc,119, 613 (1972).

    Article  CAS  Google Scholar 

  18. H. Watanabe, T. Nighinaga and T. Arizumi, J. Crystal Growth,17, 183 (1972).

    Article  CAS  Google Scholar 

  19. T. Y. Wu, J. Electrochem. Soc, 121., 1357 (1974).

    CAS  Google Scholar 

  20. K. E. Enstrom, C. J. Nuese, J. R. Appert, and J. J. Gannon, J. Electrochem. Soc,121. 1516 (1974).

    CAS  Google Scholar 

  21. B. W. Wessels, J. Electrochem. Soc,122, 402 (1975).

    Article  CAS  Google Scholar 

  22. G. B. Stringfellow and H. T. Hall, Jr., J. Electrochem. Soc, 123, 916 (1976).

    Article  CAS  Google Scholar 

  23. J. W. Philbrick and W. C. Westenhoefer, J. Electronic Materials,3, 475 (1974).

    Article  CAS  Google Scholar 

  24. V. S. Ban, H. F. Gossenberger and J. J. Tietjen, J. Appl. Phys.,43, 2471 (1972).

    Article  CAS  Google Scholar 

  25. J. V. DiLorenzo, J. Crystal Growth,17, 187 (1972).

    Google Scholar 

  26. J. K. Kennedy and W. D. Potter, J. Crystal Growth,19, 85 (1973).

    Article  CAS  Google Scholar 

  27. J. J. Tietjan, M. S. Abrahams, A. B. Dreeben and H. F. Gossenberger, in Pro. Second Intern. Symp. on Gallium Arsenide (Inst. Phys. Soc. Conf., 1969, Ser. No. 7) p. 55.

  28. V. K. Subashiev and G. A. Chalikyan, Sov. Phys. Semiconductors,3, 216 (1970).

    Google Scholar 

  29. M. G. Millvidskii, V. B. Osvenskii, V. I. Fistuall, E. M. Omel'yanovskii and S. P. Grishina, Sov. Phys. Semiconductors,1, 813 (1968).

    Google Scholar 

  30. R. C. Taylor, J. Electrochem. Soc,118, 364 (1971).

    Article  CAS  Google Scholar 

  31. According to Sidorov, et al., (reference 32), when the doping process occurs under equilibrium conditions, the doping should reflect extrinsic behavior and the donor concentration should be proportional to the square root of the vapor phase concentration. However, a linear dependance has been found by us for Ga(As,P), by Stewart (reference 33) and by van der Does de Bye and Peters (reverence 34) for GaP. The linear dependance indicates that the doping occurs under non-equilibrium conditions.

  32. Yu G. Sidorov, L. F. Vasileva, I. V. Sabinina, S. A. Dvoretsky and A. V. Sidorova, J. Electrochem. Soc.,123, 698 (1976).

    Article  CAS  Google Scholar 

  33. C. E. E. Stewart, J. Crystal Growth,8, 259 (1971).

    Article  CAS  Google Scholar 

  34. J. A. W. van der Does de Bye and R. C. Peters, Philips Res. Rept.24, 210 (1969).

    Google Scholar 

  35. A. H. Herzog, W. O. Groves and M. B. Craford, J. Appl. Phys.,40, 1839 (1969).

    Article  Google Scholar 

  36. O. Listiko, Jr. and C. A. Bittmann, Solid State Electronics,16, 1321 (1973).

    Article  Google Scholar 

  37. C. Wu, unpublished results.

  38. Thermodynamic calculation was done by C. Wu using equations derived by Kirwan (reference 10). The results indicate that the composition change is about 1% over the partial pressure range shown in Figure 9.

  39. W. L. Snyder and C. Wu, unpublished results.

  40. R. Cadoret and M. Cadoret, J. Crystal Growth,31, 142 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C.H., Solomon, R., Snyder, W.L. et al. Optimization studies of CVD growth of GaAs0.6P0.4 . J. Electron. Mater. 7, 791–821 (1978). https://doi.org/10.1007/BF02655475

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655475

Key Words

Navigation