Skip to main content
Log in

Thermal considerations on the recalescence of alloy powders

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The principles involved in the solidification of supercooled binary alloy droplets are discussed with particular emphasis on solute redistribution. The effects of alloying elements on the relevant parameters of the thermal history of recalescing aluminum droplets are studied with the aid of enthalpytemperature relationships. Thermal considerations indicate that the critical supercoolings to achieve partitionless solidification change rather modestly for the alloys investigated. In addition, the rate of recalescence after nucleation is likely to be slowed down by the addition of solute. A Newtonian model for solidification of nonideal binary alloys with morphologically stable interfaces is derived and used to study the thermal history and solute redistribution during recalescence. The effects of different solutes, alloy concentration, initial supercooling, and interfacial kinetics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bi:

Biot number,hrino LA

C:

molar heat capacity

Di :

interfacial diffusivity of solute

f, g :

molar and volume fraction solid, respectively

f a :

fraction solid that can form adiabatically below a given temperature

Fo:

Fourier number, α At/rL 20

G :

Gibbs free energy

H :

molar enthalpy

MA :

enthalpy of pure solidA at its melting temperature

AH M :

molar heat of fusion

h :

heat transfer coefficient at the droplet surface

k, k e :

interfacial and equilibrium partition coefficients, respectively

k :

thermal conductivity

R:

gas constant

r 0 :

radius of droplet or powder

Ste:

Stefan Number, AL AM G)/ΔHM/A

T :

temperature

T 0 , θ 0 :

thermodynamic limit to partitionless solidification

T :

temperature of cooling environment, 300 K

T H , θ H :

hypercooling temperature

T L , θ L :

liquidus temperature

T M :

melting temperature

T s , θ S :

solidus temperature

ΔT:

supercooling

V :

interface velocity

V o :

characteristic attachment velocity

V D :

diffusional velocity of solute atT L

X:

alloy composition in mole fraction

α :

thermal diffusivity

δi :

diffusion distance that the solute must travel to avoid trapping

θ :

dimensionless temperature; see Eq. [8]

Δθ:

dimensionless supercooling, θL

k:

alloy heat capacity normalized by that of the pure solvent

μ:

chemical potential

v :

kinetic parameter,V 0 /V D

Φ :

normalized molar volume Ω/Ω AL

Ψ:

dimensionless enthalpy; see Eq. [7]

Ω :

molar volume

L :

of the liquid

N :

at the moment of nucleation

S :

of the solid

0:

relative toT o

A,B :

solvent and solute, respectively

H :

refers to enthalpy part of interaction parameter

S :

refers to entropy part of interaction parameter

x :

excess enthalpy or free energy

References

  1. M. Cohen and R. Mehrabian: inRapid Solidification Processing, Principles and Technologies III, R. Mehrabian, ed., National Bureau of Standards, Gaithersburg, MD, 1983, pp. 1–27.

    Google Scholar 

  2. W. J. Boettinger and J. H. Perepezko: inRapidly Solidified Crystalline Alloys, S. K. Das, B. H. Kear, and C. M. Actam, eds., TMS- AIME, Warrendale, PA, 1985, pp. 21–58.

    Google Scholar 

  3. J. C. Baker and J. Cahn: inSolidification, ASM, Metals Park, OH, 1969, pp. 23–58.

    Google Scholar 

  4. M. J. Aziz:J. Appl. Phys., 1982, vol. 53, pp. 1158–67.

    Article  CAS  Google Scholar 

  5. R. J. Patterson, II: inRapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear, B.C. Giessen, and M. Cohen, eds., Elsevier Science Publishing Co., New York, NY, 1982, pp. 123–29.

    Google Scholar 

  6. C. G. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 13–23.

    CAS  Google Scholar 

  7. M. R. Glickstein, R. J. Patterson, and N. E. Shockley: inRapid Solidification Processing, Principles and Technologies, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor's Publishing Div., Baton Rouge, LA, 1978, pp. 46–63.

    Google Scholar 

  8. C. G. Levi and R. Mehrabian:Metall. Trans. B, 1980, vol. 11B, pp. 21–27.

    Article  CAS  Google Scholar 

  9. C. G. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 221–34.

    CAS  Google Scholar 

  10. D. Shechtman, S. D. Ridder, and R. Mehrabian: inRapid Solidification Processing, Principles and Technologies III, R. Mehrabian,ed., National Bureau of Standards, Gaithersburg, MD, 1983, pp. 96–104.

    Google Scholar 

  11. F. H. Samuel:Metall. Trans. A, 1986, vol. 17A, pp. 73–91.

    CAS  Google Scholar 

  12. C. G. Levi and R. Mehrabian: inUndercooled Alloy Phases, E.W. Collings and C. C. Koch, eds., TMS-AIME, Warrendale, PA, 1987, pp. 345–74.

    Google Scholar 

  13. C. G. Levi, J. J. Valencia, and R. Mehrabian: inProcessing of Structural Metals by Rapid Solidification, F. H. Froes and S. J. Savage, eds., ASM INTERNATIONAL, Metals Park, OH, 1987, pp. 1–12.

    Google Scholar 

  14. O. Salas:Microstructural Evolution of Rapidly Solidified Al-Fe-Ce Undercooled Droplets, M.S. Thesis, Univ. of California, Santa Barbara, CA, 1987.

    Google Scholar 

  15. Smithells:Metals Reference Book, 6th ed., E. A. Brandes, ed., Butterworths & Co., London, 1983.

    Google Scholar 

  16. L. Kaufman and H. Nesor:CALPHAD, 1978, vol. 2, pp. 325–48.

    Article  CAS  Google Scholar 

  17. J. L. Murray:Bulletin of Alloy Phase Diagrams, 1982, vol. 3, pp. 60–74.

    Google Scholar 

  18. J. L. Murray: inAlloy Phase Diagrams, Materials Research Society Symposia Proceedings, L. H. Bennet, T. B. Massalski, and B.C. Giessen, eds., Elsevier Publishing Co., New York, NY, 1983, vol. 19, pp. 249–62.

    Google Scholar 

  19. J. L. Murray and A. J. McAlister:Bulletin of Alloy Phase Diagrams, 1984, vol. 5, pp. 74–84.

    CAS  Google Scholar 

  20. L. Kaufman and H. Nesor: inTreatise on Solid State Chemistry, N.B. Hannay, ed., Plenum Press, New York, NY, 1975, vol. 5, p. 179.

    Google Scholar 

  21. W. J. Boettinger and S. R. Coriell: inScience and Technology of the Undercooled Melt, P. R. Sahm, H. Jones, and C. M. Actam, eds., NATO ASI Series E—No. 114, Martinus Nijhoff, Dodrecht, FRG, 1986, p. 81.

    Google Scholar 

  22. D. Turnbull: inThermodynamics in Physical Metallurgy, ASM, Metals Park, OH, 1949.

    Google Scholar 

  23. D. Turnbull:Metall. Trans. B, 1981, vol. 12B, pp. 217–29.

    Article  CAS  Google Scholar 

  24. J. W. Cahn, W. B. Hillig, and G. W. Sears:Acta Metall., 1964, vol. 12, pp. 1421–39.

    Article  CAS  Google Scholar 

  25. J. P. Chan: inProceedings of the Seventh Symposium on Thermo- physical Properties, American Society of Mechanical Engineers, New York, NY, 1977, pp. 475–79.

    Google Scholar 

  26. R. T. Beyer and E. M. Ring: inLiquid Metals: Chemistry and Physics, S. Z. Beer, ed., Marcel Dekker, Inc., New York, NY, 1972, p. 450.

    Google Scholar 

  27. G. H. Geiger and D. R. Poirier:Transport Phenomena in Metallurgy, Addison Wesley, Reading, MA, 1980.

    Google Scholar 

  28. J. C. Baker:Interfacial Partitioning During Solidification, Ph.D. Thesis, MIT, 1970, ch. 5.

  29. K. A. Jackson, G.H. Gilmer, and H. J. Leamy:in Laser and Electron Beam Processing of Materials, C. W. White and P.S. Peercy, eds., Academic Press, New York, NY, 1980, pp. 104–10.

    Google Scholar 

  30. B. Caroli, C. Caroli, and B. Roulet:Acta Metall., 1986, vol. 34, pp. 1867–77.

    Article  CAS  Google Scholar 

  31. W. J. Boettinger, S.R. Coriell, and R. F. Sekerka:Mater. Sci. Eng., 1984, vol. 65, pp. 27–36.

    Article  CAS  Google Scholar 

  32. W. A. Tiller, K. A. Jackson, J. W. Rüther, and B. Chalmers:Acta Metall., 1953, vol. 1, p. 428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, C.G. Thermal considerations on the recalescence of alloy powders. Metall Trans A 19, 687–697 (1988). https://doi.org/10.1007/BF02649283

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649283

Keywords

Navigation