Skip to main content
Log in

Stress-State dependence of strain-hardening behavior in 2014 Al/15 vol Pct Al2O3 composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to examine if the effective stress-strain function for discontinuously reinforced aluminum (DRA) matrix composites is independent of stress state, as they are for aluminum alloys. The rationale for such work is provided by the need to develop constitutive equations for applications in metal forming and forging problems. Experimental effectiveas curves at room temperature were determined for a particulate-reinforced composite, 2014 Al/15 vol pct A12O3, and the matrix material, 2014 Al, under a variety of stress states. The tests consisted of uniaxial tension, equibiaxial tension (bulge test), and compression tests. To eliminate the effects of prior precipitation, all samples were given a solution-heat-treatment prior to tests. It was found that for the composite the effective yield stress in uniaxial tension was higher than that in equibiaxial tension but slightly lower than that in compression. However, the effective yield stresses for the matrix material in uniaxial tension and equibiaxial tension were nearly the same. The strain-hardening rate of the composite under equibiaxial tension was higher than that under either uniaxial tension or compression. It is suggested that nondeformable dead zones can develop around the particles during deformation whose shape changes with the applied stress state, and this is partly responsible for the observed differences in behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Vial, W.F. Hosford, and R.M. Caddell:Int. J. Mech. Sci., 1983, vol. 25(12), pp. 899–915.

    Article  Google Scholar 

  2. J. Woodthorpe and R. Pearce:Int. J. Mech. Sci., 1970, vol. 12, pp. 341–47.

    Article  Google Scholar 

  3. R.H. Wagoner:Metall. Trans. A, 1980, vol. 11A, pp. 165–75.

    CAS  Google Scholar 

  4. F.J. Humphreys, W.S. Miller, and M.R. Djazeb:Mater. Sci. Technol., 1990, vol. 6, pp. 1157–66.

    CAS  Google Scholar 

  5. D.B. Zahl and R.M. McMeeking:Acta Metall., 1991, vol. 39(6), pp. 1117–22.

    Article  CAS  Google Scholar 

  6. J.R. Brockenbrough, S. Suresh, and H.A. Wienecke:Acta Metall., 1991, vol. 39 (5), pp. 735–52.

    Article  CAS  Google Scholar 

  7. D.L. Davidson:Metall. Trans. A, 1991, vol. 22A, pp. 113–23.

    CAS  Google Scholar 

  8. D.-G.C. Syu and A.K. Ghosh:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2027–48.

    Article  CAS  Google Scholar 

  9. T.C. Hsu:Mater. Res. & Stand., 1969, vol. 9 (12), pp. 20–25.

    Google Scholar 

  10. C.C. Chu and A. Needleman:ASME J. Eng. Mater. Technol., 1980, vol. 102 (F-28), pp. 249–56.

    Google Scholar 

  11. W. Johnson and J.L. Duncan:Sheet Met. Ind., 1965, April, pp. 271-75.

  12. F. Jovane:Int. J. Mech. Sci., 1968, vol. 10, pp. 403–27.

    Article  Google Scholar 

  13. A.R. Ragab and A.T. Abbas:ASME J. Eng. Mater. Technol., 1986, vol. 108, pp. 250–57.

    Article  CAS  Google Scholar 

  14. N.-M. Wang and M.R. Shammamy:J. Mech. Phys. Solids., 1969, vol. 17, pp. 43–61.

    Article  Google Scholar 

  15. N.-M. Wang:Numerical Analysis of Forming Processes,J.F.T. Pittman, O.C. Zienkiewicz, R.D. Wood, and J.M. Alexander, eds., John Wiley & Sons Ltd., New York, NY, 1984, pp. 117–64.

    Google Scholar 

  16. M.F. Hahi, A. Parmar, and P.B. Mellor:Int. J. Mech. Sci., 1981, vol. 23, pp. 221–27.

    Article  Google Scholar 

  17. W.F. Brown,Jr. and G. Sachs:Trans. ASME, 1948, vol. 70, pp. 241–51.

    Google Scholar 

  18. W.F. Brown, and F.C. Thompson:Trans. ASME, 1949, vol. 71, pp. 575–85.

    Google Scholar 

  19. J.K. Banerjee:ASME J. Eng. Mater. Technol., 1985, vol. 107, pp. 138–44.

    Google Scholar 

  20. W.F. Hosford:Metal Forming: Mechanics and Metallurgy, Prentice-Hall, Englewood Cliffs, NJ, 1983, pp. 122 and 146.

    Google Scholar 

  21. T.H. Courtney:Mechanical Behavior of Materials, McGraw- Hill, New York, 1990.

    Google Scholar 

  22. V.C. Nardone and K.M. Prewo:Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  23. Y. Flom and R.J. Arsenault:Mater. Sci. Eng., 1985, vol. 75, pp. 151–67.

    Article  CAS  Google Scholar 

  24. R.J. Arsenault, L. Wang, and C.R. Feng:Acta Metall., 1991, vol. 39(1), pp. 47–57.

    Article  CAS  Google Scholar 

  25. R.H. Jones, C.A. Lavender, and M.T. Smith:Scripta Metall., 1987, vol. 21, pp. 1565–70.

    Article  CAS  Google Scholar 

  26. T. Christman, A. Needleman, S. Nutt, and S. Suresh:Mater. Sci. Eng., 1989, vol. A107, pp. 49–61.

    CAS  Google Scholar 

  27. T. Christman, A. Needleman, and S. Suresh:Acta Metall., 1989, vol. 37(11), pp. 3029–50.

    Article  CAS  Google Scholar 

  28. A. Levy and J.M. Papazian:Metall. Trans. A, 1990, vol. 21A, pp. 411–2.

    CAS  Google Scholar 

  29. J.J. Lewandowski, C. Liu, and W.H. Hunt, Jr.: Paper presented at 1987 AIME Annual Meeting, Denver, CO, Feb. 24, 1987.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, the University of MichiganSenior Engineer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syu, D.G.C., Ghosh, A.K. Stress-State dependence of strain-hardening behavior in 2014 Al/15 vol Pct Al2O3 composite. Metall Mater Trans A 25, 2049–2061 (1994). https://doi.org/10.1007/BF02649053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649053

Keywords

Navigation