Skip to main content
Log in

Theory of mobile dislocation density: Application to the deformation of 304 stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Tensile and creep deformation of 304 stainless steel have been studied at room temperature in a soft tensile machine. The strain-stress curve shows a long inelastic transient, over nearly two hundred megapascals, in which the slope and the strain rate increase by about a factor of 3. Creep is characterized by large creep strain, transient strain rate, and a weak stress dependence. The stress rate applied during loading, on the other hand, has a strong effect on the subsequent creep. These results, in combination with earlier studies, have suggested a new model for the evolution of mobile dislocation density. Mobile dislocations are injected into the sample as a consequence of the increase of stress; the dislocations move under the influence of an effective stress over a statistical mean free path and then are trapped in a network. The effects of trapping are reduced mobile density, strain hardening, and a decrease in the effective stress. Application of the model provides a quantitative prediction of the principal experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Conrad and W. D. Robertson:Trans. TMS-AIME, 1957, vol. 209, p. 503.

    Google Scholar 

  2. H. Conrad and W. D. Robertson:Trans. TMS-AIME, 1958, vol. 212, p. 563.

    Google Scholar 

  3. J. H. Holbrook, R. W. Rohde, and J. C. Swearengen:Acta Metall., 1981, vol. 29, p. 1099.

    Article  CAS  Google Scholar 

  4. T. H. Alden: inMechanical Testing for Deformation Model Development, R. W. Rohde and J. C. Swearengen, eds., ASTM STP 765, ASTM, Philadelphia, PA, 1982, p. 29.

    Google Scholar 

  5. T. H. Alden:Metall. Trans. A, 1985, vol. 16A, p. 375.

    Google Scholar 

  6. T. H. Alden:Phil. Mag., 1972, vol. 25, p. 785.

    Google Scholar 

  7. T. H. Alden: University of British Columbia, Vancouver, BC, un- published research, 1985.

  8. J. J. Gilman and W. G. Johnston:J. Appl. Phys., 1959, vol. 30, p. 129.

    Article  Google Scholar 

  9. J. J. Gilman:Micromechanics of Flow in Solids, McGraw-Hill, New York, NY, 1969.

    Google Scholar 

  10. U. F. Kocks:Metall. Trans., 1970, vol. 1, p. 1121.

    Google Scholar 

  11. A. S. Keh:Phil. Mag., 1965, vol. 12, p. 9.

    CAS  Google Scholar 

  12. J. D. Livingston:Acta Metall., 1962, vol. 10, p. 215.

    Article  Google Scholar 

  13. J. E. Bailey and P. B. Hirsch:Phil. Mag., 1960, vol. 5, p. 485.

    CAS  Google Scholar 

  14. G. I. Taylor:Proc. Roy. Soc. A, 1934, vol. 145, p. 362.

    Google Scholar 

  15. G. Saada: inElectron Microscopy and the Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, NY, 1962, p. 651.

    Google Scholar 

  16. W. A. Coghlan, R. A. Menezes, and W. D. Nix:Phil. Mag., 1971, vol. 23, p. 1515.

    CAS  Google Scholar 

  17. B. Reppich, P. Haasen, and B. Ilschner:Acta Metall., 1964, vol. 12, p. 1283.

    Article  CAS  Google Scholar 

  18. W. G. Johnston and D. F. Stein:Acta Metall., 1963, vol. 11, p. 317.

    Article  CAS  Google Scholar 

  19. H. Mecking and K. Lucke:Scripta Met., 1970, vol. 4, p. 427.

    Article  Google Scholar 

  20. T. H. Alden: University of British Columbia, Vancouver, BC,Metall. Trans. A, 1987, in press.

    Google Scholar 

  21. O. H. Wyatt:Proc. Phys. Soc, 1953, vol. 66B, p. 459.

    CAS  Google Scholar 

  22. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, MacMillan, New York, NY, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alden, T.H. Theory of mobile dislocation density: Application to the deformation of 304 stainless steel. Metall Trans A 18, 51–62 (1987). https://doi.org/10.1007/BF02646221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646221

Keywords

Navigation