Skip to main content
Log in

Postweld electrotransport treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hydrogen damage susceptibility of high-strength steel weldments and in other advanced materials, such as intermetallics, is a problem that restricts their application in many structural uses. A high-temperature (~500 °C) postweld treatment is often applied to remove the diffusible hydrogen and make the material more resistant to hydrogen damage. An electrotransport technique, using a direct current, can be applied at room temperature to move hydrogen from the underbead region, which is crack susceptible. The method has been used to electrorefine many metals and alloys containing both interstitial and substitu-tional solutes. This paper reviews the electrotransport theory and applies it to estimate the time of electrotransport treatment for lowering the hydrogen content from the underbead region by 50%. Thus, this theoretical work forms the basis for developing a new practice and provides sample calculations. Under a combined influence of the diffusional and electrotransport at room temperature using an electric field of 0.10 V/cm, ~30 min is required to remove 50% of the hydrogen from a starting concentration of 5 ppm. Theoretically, the treatment will also generate a heat of 0.95 kcal/s, which may not cause an excessive temperature increase in the workpiece. The electrotransport technique thus has the potential for a low-cost, low-temperature practice for mitigating hydrogen damage susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Hirth,Metall. Trans. A, Vol 11 (No. 6), 1980, p 861

    Google Scholar 

  2. N. Yurioka and H. Suzuki,Int. Mater. Rev., Vol 35, 1990, p 217

    CAS  Google Scholar 

  3. J.N. Pratt and R.G.R. Sellors,Electrotransport in Metals and Alloys, Diffusion and Defects Monograph, DDMS-2, Trans. Tech. SA, Switzerland, 1973, p 1–202

    Google Scholar 

  4. F.R. Coe,Welding Steels without Hydrogen Cracking, The Welding Institute, 1973

  5. D.J. Allen, B. Chew, and P. Morris,Weld. J., Vol 61, 1982, p 212

    Google Scholar 

  6. F. Matsuda, H. Kokawa, and S. Matsuzaki,Trans. Jpn Weld Soc, Vol 18, 1987, p 12

    Google Scholar 

  7. G.M. Evans and N. Christensen,Met. Const,: & British Welding J., Vol 3, 1971, p 188

    CAS  Google Scholar 

  8. R. Wang, Naval Surface Warfare Center, Annapolis, MD, private communication, 1993

  9. R.E. Norberg,Phys. Rev., Vol 86, 1952, p 745

    Article  CAS  Google Scholar 

  10. H.B. Huntington,Trans. TMS-AIME, Vol 245, 1969, p 2571

    CAS  Google Scholar 

  11. R.S. Sorbello,J. Phys. Chem. Solids, Vol 34, 1973, p 937

    Article  CAS  Google Scholar 

  12. F. Skaupy, Electrizitatsleitung in Metallen,Verh. Dtsch. Phys Gesellschaft, Vol 16, 1914, p 159

    Google Scholar 

  13. V.B. Fiks, Fizika Tverdogo Tela,Sov. Phys., Vol 1, 1959, p 14

    Google Scholar 

  14. H.B. Huntington and A.R. Grone,J. Phys. Chem. Solids Vol 20 1961, p 76

    Article  CAS  Google Scholar 

  15. C. Bosvieux and J. Friedel,J. Phys. Chem. Solids, Vol 23 1962 p 123

    Article  Google Scholar 

  16. D.G. Westlake and J.F. Miller,J. Less-Common Met Vol 65 1979, p 139

    Article  CAS  Google Scholar 

  17. B. Mishra and J.M. Sivertsen,Metall. Trans A Vol 14 1983 p 2255

    Google Scholar 

  18. V. Erckmann and H. Wipf,Phys. Rev. Lett., Vol 37, 1976, p 241

    Article  Google Scholar 

  19. Y.K. Ivashina, V.F. Nemchenko, and V.G. Charnetskiy,Phys. Met. Metallogr., Vol 40, 1975, p 97

    Google Scholar 

  20. C.L. Jensen, Ph.D. thesis, Iowa State University, 1977

  21. D.E. Field, MS thesis, University of Minnesota, 1979

  22. D.T. Peterson and C.L. Jensen,Metall. Trans A, Vol 9 1978 n 1673

  23. R.A. Oriani and O.D. Gonzalez,Metall. Trans AIME Vol 239 1967, p 1041

    CAS  Google Scholar 

  24. R.E. Einzinger and H.B. Huntington,J. Phys. Chem. Solids Vol 35, 1979, p 1563

    Article  Google Scholar 

  25. R. Pietrzak and B. Rozenfeld,J. Less-Common Met Vol 62 1990, p 23

    Article  Google Scholar 

  26. C.V. Thompson and J.R. Lloyd, Electromigration and IC Interconnects,MRS Bull., December 1993, p 19

  27. K. Shinozaki, X. Wang, and T.H. North,Metall. Trans. A, Vol 21 1990, p 1287

    Google Scholar 

  28. T. Terasaki, G.T. Hall, and R.J. Pargeter,Trans. Jpn. Weld Soc., Vol 22-1, 1991, p 52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B., Olson, D.L. & David, S.A. Postweld electrotransport treatment. JMEP 3, 612–618 (1994). https://doi.org/10.1007/BF02645259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645259

Keywords

Navigation