Skip to main content
Log in

Kinetics of solid vanadium-nitrogen reactions at high temperatures

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Thermogravimetric studies were made to determine the kinetics of the reaction between 99.83 pct vanadium sheet and purified nitrogen gas in the temperature range of 1173 to 1723 K, at pressures of 9.3 × 104 to 9.3 Pa (700 to 7 × 10-2 torr) and times up to 160 h. Metallographic and X-ray diffraction techniques were used to examine the reaction products. The data followed either parabolic, cubic, or linear kinetics. In general it was observed that the initial kinetics were parabolic. At high temperatures and near atmospheric pressures, the reaction kinetics changed from parabolic to cubic at longer times. At the lowest pressure the preparabolic kinetics were linear. Weight gains in the parabolic region were mainly due to solution and diffusion of nitrogen in vanadium with the weight gain shown by the equation (ΔW/A)2 = 3.2 × 10-4 Te162-000/RT t. The cubic region was related to the formation of an outer layer of VN over an intermediate layer of V3N and a core of the saturated solution of nitrogen in vanadium with the approximate weight gain shown by the equation (ΔW/A)3 = 1.24 × 10-3 Te- 208,000/RT t Linear weight gains at low pressure were presumed to be controlled by the rate of nitrogen adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Gulbransen and K. F. Andrew:J. Electrochem. Soc., 1950, vol. 97, p. 396.

    Article  CAS  Google Scholar 

  2. T. S. Verkhoglyadova, T. V. Dubovik, and G. V. Samsonov:Porosh. Met. Akad. Nauk Ukr. SSR., 1961, vol. 1, no. 4, pp. 9–20.

    CAS  Google Scholar 

  3. R. W. Powers and M. V. Doyle:J. Appl. Phys., 1959, vol. 30, p. 514.

    Article  CAS  Google Scholar 

  4. Gmelins Handbuch der Anorganischen Chemie, Vanadium (B), vol. 48, pp. 167–77, Verlag Chemie-GMBH, Weiheim/Begstr., 1967.

  5. J. L. Henry, S. A. O’Hare, R. A. McCune, and M. P. Krug:J. Less-Common Metals, 1971, vol. 25, p. 39.

    Article  CAS  Google Scholar 

  6. W. Rostoker and A. Yamamoto:Trans. ASM, 1954, vol. 46, p. 1136.

    Google Scholar 

  7. D. Potter and C. Alstetter:Acta Met., 1971, vol. 19, p. 881.

    Article  CAS  Google Scholar 

  8. D. I. Potter and C. Altstetter:Acta Met., 1972, vol. 20, p. 313.

    Article  CAS  Google Scholar 

  9. Donald Potter and Ronald Geils:Scri. Met., 1972, vol. 6, p. 395.

    Article  CAS  Google Scholar 

  10. H. Eyring:J. Chem. Phys., 1934, vol. 3, p. 107.

    Article  Google Scholar 

  11. Stearn and Eyring: cited in W. Jost,Diffusion in Solids, Liquids and Gases, p. 171, Academic Press, New York, 1952.

    Google Scholar 

  12. N. F. Mott:Trans. Faraday Soc., 1940, vol. 36, p. 472.

    Article  CAS  Google Scholar 

  13. G. Tammann:Z. Anorg. Allg. Chem., 1920, vol. 111, p. 78.

    Article  Google Scholar 

  14. N. B. Pilling and R. E. Bedworth:J. Inst. Metals, 1923, vol. 29, p. 529.

    Google Scholar 

  15. C. Wagner and K. Grunewald:Z. Phys. Chem., 1938, vol. 40B, p. 455.

    Article  Google Scholar 

  16. Klaus Schwerdtfeger:Trans. TMS-AIME, 1967, vol. 239, p. 1432.

    CAS  Google Scholar 

  17. J. C. Scully:The Fundamentals of Corrosion, p. 13, Pergamon Press, Oxford, London, 1966.

    Google Scholar 

  18. Per Kofstad:High-Temperature Oxidation of Metals, p. 112, John Wiley & Sons, Inc., New York, 1966.

    Google Scholar 

  19. O. Kubaschewski and B. E. Hopkins:Oxidation of Metals and Alloys, pp. 35–45, Butterworths, London, 1962.

    Google Scholar 

  20. Carl Wagner: inAtom Movements, p. 153, ASM. Cleveland, Ohio, 1951.

    Google Scholar 

  21. L. S. Darken and R. W. Gurry:Physical Chemistry of Metals, p. 445, McGraw-Hill Book Company, Inc., New York, 1953.

    Google Scholar 

  22. R. M. Barrer:Diffusion In and Through Solids, Cambridge University Press, London, 1941.

    Google Scholar 

  23. W. Jost:Diffusion in Solids, Liquids, and Gases, p. 71, Academic Press, New York, 1952.

    Google Scholar 

  24. Per Kofstad:High-Temperature Oxidation of Metals, p. 167, John Wiley & Sons, Inc., New York, 1966.

    Google Scholar 

  25. G. R. Wallwork, W. W. Smeltzer, and C. J. Rosa:Acta Met., 1964, vol. 12, p. 409.

    Article  CAS  Google Scholar 

  26. L. S. Darken and R. W. Gurry:Physical Chemistry of Metals, p. 443, McGraw-Hill Book Company, Inc., New York, 1953.

    Google Scholar 

  27. S. I. Iyer and W. L. Worrell:Proc. of the Seventh International Symposium on the Reactivity of Solids, Bristol, July 17–21, 1972, p. 294, Chapman and Hall Ltd., London, 1972.

    Google Scholar 

  28. P. Kofstad and S. Espevik:J. Electrochem. Soc., 1965, vol. 112, p. 153.

    Article  CAS  Google Scholar 

  29. Per Kofstad:J. Less-Common Metals, 1964, vol. 7, p. 241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muije, P., Horton, R.M. & Duran, S.A. Kinetics of solid vanadium-nitrogen reactions at high temperatures. Metall Trans 5, 97–104 (1974). https://doi.org/10.1007/BF02642932

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642932

Keywords

Navigation