Skip to main content
Log in

Activation diffusion of oxygen under conditions of the metal-semiconductor phase transition in vanadium dioxide

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Density functional theory is used to calculate the energies of formation of oxygen vacancies and migration of oxygen in the monoclinic and rutile phases of vanadium dioxide. The results are compared to estimates of the parameters of activation diffusion of oxygen using data from the electron-beam modification of thin film structures of vanadium dioxide and their subsequent reduction in the temperature range of 20–100°C. It is shown that diffusion in both phases of vanadium dioxide has a preferential direction of oxygen migration along axis а in the monoclinic phase and axis с in the rutile phase. The difference between the rate of oxygen vacancy generation upon electron-beam exposure above and below the temperature of metal–semiconductor phase transition is explained by the jump (~150%) in the activation energy of oxygen diffusion upon the structural transition of rutile–monoclinic phase. The mobility of oxygen (oxygen vacancies) correspondingly changes by more than an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Bugaev, B. P. Zakharchena, and F. A. Chudnovskii, Metal–Semiconductor Phase Transition and Its Application (Nauka, Leningrad, 1979) [in Russian].

    Google Scholar 

  2. W. Bruckner, H. Opperman, W. Reichelt, et al., Vanadium Dioxide (Academy, Berlin, 1983).

    Google Scholar 

  3. M. A. Belyaev, A. A. Velichko, S. D. Khanin, et al., Jpn. J. Appl. Phys. 54, 051102 (2015).

    Article  Google Scholar 

  4. A. V. Ilinskii, V. Yu. Davydov, R. A. Kastro, et al., Tech. Phys. Lett. 39, 8 (2013).

    Google Scholar 

  5. D. S. Su, M. Wieske, E. Beckmann, et al., Catal. Lett. 75, 81 (2001).

    Article  CAS  Google Scholar 

  6. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM Int., Materials Park, OH, 2002).

    Google Scholar 

  7. K. A. Solntsev, K. A. Shashkeev, and A. P. Stetsovskii, Dokl. Phys. Chem. 422, 267 (2008).

    Article  CAS  Google Scholar 

  8. G. V. Samsonova, Handbook on the Physicochemical Properties of Oxides (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  9. P. E. Tomaszewski, Phase Trans. 38, 127 (1992).

    Article  CAS  Google Scholar 

  10. J. M. Longo and P. Kierkegaard, Acta Chem. Scand. 24, 420 (1970).

    Article  CAS  Google Scholar 

  11. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  13. T. H. Fischer and J. J. Almlof, Phys. Chem. 96, 9768 (1992).

    Article  CAS  Google Scholar 

  14. J. Lin, H. Ji, M. W. Swift, et al., Nano Lett. 14, 5445 (2014).

    Article  CAS  Google Scholar 

  15. K. H. Warnick, B. Wang, and S. T. Pantelides, Appl. Phys. Lett. 104, 101913 (2014).

    Article  Google Scholar 

  16. H. Wen, L. Guo, E. Barnes, et al., Phys. Rev. B 88, 165424 (2013).

    Article  Google Scholar 

  17. M. M. Islam, T. Bredow, and A. Gerson, Phys. Rev. B 76, 045217 (2007).

    Article  Google Scholar 

  18. R. Ramprasad, J. Appl. Phys. 94, 5609 (2003).

  19. J. K. Freericks, T. P. Devereaux, and R. Bulla, Phys. Rev. B 64, 233114 (2001).

    Article  Google Scholar 

  20. A. N. Tichonov and A. A. Samarskii, Equations of Mathematical Physics (Pergamon, Oxford, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Boriskov.

Additional information

Original Russian Text © P.P. Boriskov, M.A. Belyaev, A.A. Velichko, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 6, pp. 998–1004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boriskov, P.P., Belyaev, M.A. & Velichko, A.A. Activation diffusion of oxygen under conditions of the metal-semiconductor phase transition in vanadium dioxide. Russ. J. Phys. Chem. 91, 1064–1069 (2017). https://doi.org/10.1134/S003602441706005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441706005X

Keywords

Navigation