Skip to main content
Log in

Ovarian mesothelial and extramesothelial cells in interactive culture

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The ovarian mesothelium (OM) represents the tissue of origin of ovarian epithelial cancer. To gain insight into the regulation of this tissue, OM organoids and submesothelial ovarian stromal cells (SC) were isolated from New Zealand White rabbits by a stepwise tissue dispersal technique, while granulosa cells (GC) were aspirated from mature follicles (14±4 groups/animal). OM and SC dispersal were sequentially accomplished by: a) 1-h incubation in collagenase type I (300 U/ml), gentle scraping of the ovarian surface, and 1 g sedimentation of OM organoids (equivalent to 0.93±0.40 × 106 cells/animal) on 5% bovine serum albumin (BSA); b) 2-h incubation in pronase-collagenase (0.5%–300 U/ml) under periodical resuspension and gentle scraping of SC (1.40±0.25 × 106/animal) from OM-denuded ovaries. After a week-long in vitro expansion, OM cells (OMC) were cultured alone and with SC or GC within monocameral vessels or bicameral transfilter vessels in serumless, fibronectinrich (4µg/ml) HL-1 medium. After 7 d of contact cell-cell interaction, cytokeratin-positive OMC became surrounded by fibroblastoid, vimentin-positive SC or by cytokeratin and vimentin-weakly positive GC. Filter-bound OMC humorally interacting with underlying SC or GC displayed a biphasic, epithelioid and spindle, morphology with universal cytokeratin expression. Bromo-2′-deoxyuridine (BrdU) immunoperoxidase revealed mean cell proliferation indices of 14.88% for OMC cultured alone, 11.21% and 19.39% for OMC cultured with GC or SC in monocameral dishes, and 15.25% or 22.47% for OMC cultured in bicameral vessels over GC or SC, respectively. This model provides an experimental tool for investigating the unexplored role of stromal-mesothelial interaction in OM pathobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, A. T.; Auersperg, N. A cell line, ROSE 199, derived from normal rat ovarian surface epithelium. Exp. Cell Biol. 53:181–188; 1985.

    PubMed  CAS  Google Scholar 

  2. Adashi, E. Y.; Resnik, C. E.; Hurwitz, A., et al. Insulin-like growth factors: the ovarian connection. Hum. Reprod. 6:1213–1219; 1991.

    PubMed  CAS  Google Scholar 

  3. Anderson, E.; Lee, G.; Letourneau, R., et al. Cytological observations of the ovarian epithelium in mammals during the reproductive cycle. J. Morphol. 150:135–166; 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Auersperg, N.; Maclaren, I. A.; Kruk, P. A. Ovarian surface epithelium: autonomous production of connective tissue-type extracellular matrix. Biol. Reprod. 44:717–724; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Ben Ze’ev, A. Cell-cell interaction and cell configuration related control of cytokeratins and vimentin expression in epithelial cells and fibroblasts. Ann. NY Acad. Sci. 455:597–613; 1985

    Article  PubMed  CAS  Google Scholar 

  6. Bjersing, L.; Cajander, S. Ovulation and the role of the ovarian surface epithelium. Experientia 15:605–608; 1975.

    Article  Google Scholar 

  7. Blaustein, A. Surface (germinal) epithelium and related ovarian neoplasms. Pathol. Annu. 16:247–294; 1981.

    PubMed  Google Scholar 

  8. Cunha, G. R.; Bigsby, R. M.; Cooke, P. S., et al. Stromal-epithelial interactions in adult organs. Cell Differ. 17:137–148; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Cunha, G. R.; Donjacour, A. A.; Cooke, P. S., et al. The endocrinology and developmental biology of the prostate. Endocr. Rev. 8:338–362; 1987.

    PubMed  CAS  Google Scholar 

  10. Cunha, G. R.; Chung, L. W. K.; Shannon, J. M., et al. Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog. Horm. Res. 39:559–598;1983.

    PubMed  CAS  Google Scholar 

  11. Czernobilski, B.; Moll, R.; Levy, R., et al. Coexpression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur. J. Cell Biol. 37:175–190; 1985.

    Google Scholar 

  12. Elliott, W. M.; Auersperg, N. Growth of normal human ovarian surface epithelial cells in reduced serum and serum-free media. In Vitro Cell Dev. Biol. 29:9–18; 1993.

    Google Scholar 

  13. Forleo, R. Anatomy of the human ovary during pregnancy. Riv. Ostet. Ginecol. 16:530–536; 1961.

    PubMed  CAS  Google Scholar 

  14. Gondos, B. Surface epithelium of the ovary. Possible correlation with ovarian neoplasia. Am. J. Pathol. 81:303–320; 1975.

    PubMed  CAS  Google Scholar 

  15. Grob, H. S. Enzymatic dissection of the mammalian ovary. Science 146:73–74; 1964.

    Article  PubMed  CAS  Google Scholar 

  16. Grobstein, C. Tissue interactions in morphogenesis of mouse embryonic rudiments in vitro. In: Rudnick, D., ed. Aspects of synthesis and order of growth. Princeton: Princeton University Press; 1955:233–256.

    Google Scholar 

  17. Hamilton, T. C. Ovarian cancer, part I: biology. Curr. Probl. Cancer. 16:5–57; 1992.

    Article  Google Scholar 

  18. Hamilton, T. C.; Henderson, W. J.; Eaton, C. Isolation and growth of the rat ovarian germinal epithelium. In: Richards, R. J.; Rajan, K. T., eds. Tissue culture in medical research. Oxford: Pergamon Press; 1980:237–244.

    Google Scholar 

  19. Hamilton, T. C.; Davies, P.; Griffiths, K. Oestrogen receptor-like binding in the surface germinal epithelium of the rat ovary. J. Endocrinol. 95:377–385; 1982.

    PubMed  CAS  Google Scholar 

  20. Hayashi, N.; Cunha, G. R. Mesenchyme-induced changes in the neoplastic characteristics of the Dunning prostatic adenocarcinoma. Cancer Res. 51:4924–4930; 1991.

    PubMed  CAS  Google Scholar 

  21. Higgins, S. J.; Young, P.; Brody, J. R., et al. Induction of functional cytodifferentiation in the epithelium of tissue recombinants. I. Homotypic seminal vesicle recombinants. Development 106:219–234; 1989.

    PubMed  CAS  Google Scholar 

  22. Hill, M.; White, W. E. The growth and regression of follicles in the estrous rabbit. J. Physiol. 80:174–178; 1933.

    PubMed  CAS  Google Scholar 

  23. Hornby, A. E.; Pan, J.; Auersperg, N. Intermediate filaments in rat ovarian surface epithelial cells: changes with neoplastic progression in culture. Biochem. Cell Biol. 70:16–25; 1992.

    PubMed  CAS  Google Scholar 

  24. Hsu, S.; Raine, L.; Fanger, H. The use of avidin-biotin-peroxidase techniques. J. Histochem. Cytochem. 29:577–580; 1981.

    PubMed  CAS  Google Scholar 

  25. Kruk, P. A.; Auersperg, N. Human ovarian surface epithelial cells are capable of physically restructuring extracellular matrix. Am. J. Obstet. Gynecol. 167:1437–1443; 1992.

    PubMed  CAS  Google Scholar 

  26. Luna, L. G. Manual of histologic staining methods of the Armed Forces Institute of Pathology, 3rd ed. New York: McGraw-Hill; 1968:38–39.

    Google Scholar 

  27. Markl, J. Cytokeratins in mesenchymal cells: impact on functional concepts of the diversity of intermediate filament proteins. J. Cell Sci. 98:261–264; 1991.

    PubMed  CAS  Google Scholar 

  28. McNatty, K. P.; Makris, A.; DeGrazia, C. The production of progesterone, androgen, and estrogen by granulosa cells, thecal tissue, and stromal tissue from human ovaries in vitro. J. Clin. Endocrinol. & Metab. 49:687–699; 1979.

    Article  CAS  Google Scholar 

  29. Morstyn, G.; Pyke, K.; Gardner, J., et al. Immunohistochemical identification of proliferating cells in organ culture using bromodeoxyuridine and a monoclonal antibody. J. Histochem. Cytochem. 34:697; 1986.

    PubMed  CAS  Google Scholar 

  30. Motta, P. M.; Van Blerkom, J.; Makabe, S. Changes in the surface morphology of ovarian germinal epithelium during the reproductive cycle and in some pathological conditions. J. Submicrosc. Cytol. 12:407–425; 1980.

    Google Scholar 

  31. Murphy, L. J.; Murphy, L. C.; Friesen, H. G. Estrogen-induces insulin-like growth factor-I expression in the rat uterus. Mol. Endocrinol. 1:445–450; 1987.

    PubMed  CAS  Google Scholar 

  32. Nicosia, S. V. Luteinization of rabbit preovulatory granulosa cells cultured in vitro in presence of follicular oocytes. I. Growth characteristics and progestin biosynthesis. Fertil. Steril. 23:791–801; 1972.

    PubMed  CAS  Google Scholar 

  33. Nicosia, S. V. Morphological changes of the human ovary throughout life. In: Serra, G. B., ed. The Ovary. New York: Raven Press; 1983:57–81.

    Google Scholar 

  34. Nicosia, S. V. In vivo and in vitro models for investigating growth and morphogenesis in ovarian mesothelia. Lab. Invest. 64:59; 1991 (abstract).

    Google Scholar 

  35. Nicosia, S. V.; Johnson, J. H. Surface morphology of ovarian mesothelium (surface epithelium) and of other pelvic and extrapelvic mesothelial sites in the rabbit. Int. J. Gynecol. Pathol. 3:239–260; 1984.

    Article  Google Scholar 

  36. Nicosia, S. V.; Johnson, J. H.; Streibel, E. J. Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int. J. Gynecol. Pathol. 3:348–360; 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Nicosia, S. V.; Johnson, J. H.; Streibel, E. J. Growth characteristics of rabbit ovarian mesothelial (surface epithelial) cells. Int. J. Gynecol. Pathol. 4:58–74; 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Nicosia, S. V.; Nicosia, R. F. Neoplasm of the ovarian mesothelium. In: Azar, H. A., ed. Pathology of human neoplasms. New York: Raven Press; 1988:435–486.

    Google Scholar 

  39. Nicosia, S. V.; Saunders, B. O.; Narconis, R. J. Regulation and temporal sequence of surface epithelium morphogenesis in the postovulatory rabbit ovary. Prog. Clin. Biol. Res. 296:111–119; 1989.

    PubMed  CAS  Google Scholar 

  40. Nicosia, S. V.; Saunders, B. O. Initial characterization of a luteal growth factor for ovarian mesothelial cells. In: Hirschfield, A., ed. VII. Ovarian workshop: paracrine communication in the ovary. New York: Plenum Press; 1989:237–244.

    Google Scholar 

  41. Nicosia, S. V.; Acevedo-Duncan, M.; Saunders, B. O. Effects of protein and steroid hormone on growth and morphogenesis of ovarian mesothelium. J. Cell Biol. 3:345; 1990 (abstract).

    Google Scholar 

  42. Nicosia, S. V.; Saunders, B. O.; Acevedo-Duncan, M., et al. Pathobiology of ovarian mesothelium. In: Familiari, G.; Makabe, S.; Motta, P. M., eds. Ultrastructure of the ovary. Boston: Kluwer Academic; 1991:287–310.

    Google Scholar 

  43. Osterholzer, H. O.; Johnson, J. H., Nicosia, S. V. An autoradiographic study of the rabbit ovarian surface epithelium before and after ovulation. Biol. Reprod. 33:729–738; 1985.

    Article  PubMed  CAS  Google Scholar 

  44. Osterholzer, H. O.; Streibel, E. J.; Nicosia, S. V. Growth effects of protein hormones on cultured rabbit ovarian surface epithelial cells. Biol. Reprod. 33:247–258; 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Piquette, G. N.; Timms, B. G. Isolation and characterization of rabbit ovarian surface epithelium, granulosa cells, and peritoneal mesothelium in primary culture. In Vitro Cell. Dev. Biol. 26:471–481; 1990.

    Article  PubMed  CAS  Google Scholar 

  46. Sakakura, T.; Sagakami, Y.; Nishizuka, Y. Accelerated mammary cancer development by fetal salivary mesenchyma isografted to adult mouse mammary epithelium. J. Natl. Cancer Inst. 66:953–959; 1981.

    PubMed  CAS  Google Scholar 

  47. Schutte, B.; Reynders, M. M. J.; Bosman, F. T., et al. Studies with anti-bromodeoxyuridine antibodies. II. Simultaneous immunocytochemical detection of antigen expression and DNA synthesis by in vivo labeling of mouse intestinal mucosa. J. Histochem. Cytochem. 35:371–374; 1987.

    PubMed  CAS  Google Scholar 

  48. Siemens, C. H.; Auersperg, N. Serial propagation of human ovarian surface epithelium in tissue culture. J. Cell. Physiol. 134:347–356; 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Silberstein, G. B.; Flanders, K. C.; Roberts, A. B., et al. Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β1. Dev. Biol. 152:354–362; 1992.

    Article  PubMed  CAS  Google Scholar 

  50. Skinner, M. K. Mesenchymal (stromal)-epithelial cell interactions in the testis and ovary which regulate gonadal function. Reprod. Fertil. Dev. 2:237–243; 1990.

    Article  PubMed  CAS  Google Scholar 

  51. Tabibzadeh, S. Human endometrium: an active site of cytokine production and action. Endocr. Rev. 12:272–290; 1991.

    Article  PubMed  CAS  Google Scholar 

  52. VanBlerkom, J.; Motta, P., eds. The cellular basis of mammalian reproduction. Munich: Urban and Schwarzenberg. 1979:5–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacomini, G., Nicosia, S.V., Saunders, B.O. et al. Ovarian mesothelial and extramesothelial cells in interactive culture. In Vitro Cell Dev Biol - Animal 31, 300–309 (1995). https://doi.org/10.1007/BF02634005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634005

Key words

Navigation