Skip to main content
Log in

Transient alterations in cellular permeability in cultured human proximal tubule cells: Implications for transport studies

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Primary cultures of human proximal tubule (HPT) cells possess the characteristics of a tight epithelium and retain the characteristics of in vivo renal function. HPT cells from confluent monolayers when grown on collagen-coated polycarbonate inserts in a hormonally defined serum-free medium. However, initial studies of transepithelial transport observed large bidirectional fluxes of the paracellular probe inulin. The present studies were designed to assess the transformation of HPT cell tight junctions to a “leaky” state and subsequent recovery. The apparent transepithelial electrical resistance of HPT cells at confluence was 952.0±70.0 ohms*cm2, suggesting a well-developed tight junction-mediated paracellular pathway in this epithelium. However, replacement of the growth media produced an immediate 90% drop in the initial resistance, which was paralleld by an increased flux of inulin and of phenol red. This transient abolition of barrier function spontaneously reestablished over 1–2 h by a process that was dependent on the ionic composition of the added media. Complete recovery of cellular resistance was paralleled by markedly decreased fluxes of inulin and of phenol red. The recovery of cellular barrier function was inhibited by cytochalasin B suggesting an intracellular action, not a physical disruption of the monolayer. These results suggest that the tight junctions in these cells appear to transiently produce a leaky state during removal of the media, but rearrange to a “tight conformation” when incubated in the appropriate media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboulafia, J.; Sanioto, S. M. L.; Lacaz-Vieira, F. Cellular Li+ opens paracellular path in toad skin: amiloride blockable effects. J. Membr. Biol. 74:59–65; 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, J. M.; Stevenson, B. R. The molecular structure of the tight junction. In: Cereijido, M., ed. Tight junctions. Boca Raton: CRC Press; 1992:77–90.

    Google Scholar 

  3. Balda, M. S. Intracellular signals in the assembly and sealing of tight junctions. In: Cereijido, M. ed. Tight junctions. Boca Raton: CRC Press; 1992:121–137.

    Google Scholar 

  4. Benedictis, E. M.; Lacaz-Vieira, F. Electrolytes control flows of water across the apical barrier in toad skin: the hydrosmotic salt effect. J. Membr. Biol. 67:125–135; 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Bentzel, C. J.; Hainau, B.; Edelman, A., et al. Effect of plant cytokinins on microfilaments and tight junction permeability. Nature 264:666–668; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Blackburn, J. G.; Hazen-Martin, D. J.; Detrisac, C. J., et al. Electrophysiology and ultrastructure of cultured human proximal tubule cells. Kidney Int. 33:508–516; 1988.

    PubMed  CAS  Google Scholar 

  7. Castro, J. A.; Sesso, A.; Lacaz-Vieira, F. Deposition of BaSO4 in the tight junctions of amphibian epithelia causes their opening; apical Ca2+ reverses this effect. J. Membr. Biol. 134:15–29; 1993.

    PubMed  CAS  Google Scholar 

  8. Cereijido, M.; Gonzalez-Mariscal, L.; Contreras, R. G., et al. The making of a tight junction. J. Cell Sci. Suppl. 17:127–132; 1993.

    PubMed  CAS  Google Scholar 

  9. Cereijido, M.; Meza, I.; Martinez-Palomo, A. Occluding junctions in cultured epithelial monolayers. Am. J. Physiol. 240:C96-C102; 1981.

    PubMed  CAS  Google Scholar 

  10. Cereijido, M.; Robbins, E. S.; Dolan, W. J., et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77:853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Detrisac, C. J.; Sens, M. A.; Garvin, A. J., et al. Tissue culture of human kidney epithelial cells of proximal tubule origin. Kidney Int. 25:383–390; 1984.

    PubMed  CAS  Google Scholar 

  12. Diamond, J. M. The epithelial junction: bridge, gate and fence. Physiologist 20:10–18; 1977.

    PubMed  CAS  Google Scholar 

  13. Erlij, D.; Martinez-Palomo, A. Opening of tight junctions in frog skin by hypertonic urea solutions. J. Membr. Biol. 9:229–240; 1972.

    Article  PubMed  CAS  Google Scholar 

  14. Farquhar, M. G.; Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17:375–412; 1963.

    Article  PubMed  CAS  Google Scholar 

  15. Fischbarg, J.; Whittembury, G. The effect of external pH on osmotic permeability, ion and fluid transport across isolated frog skin. J. Physiol. 275:403–417; 1978.

    PubMed  CAS  Google Scholar 

  16. Frizzel, R. A.; Schultz, S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum: influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59:319–346; 1972.

    Article  Google Scholar 

  17. Gonzalez-Mariscal, L.; Chavez de Ramirez, B.; Lazaro, A., et al. Establishment of tight junctions between cells from different animal species and different sealing capacities. J. Membr. Biol. 107:43–56; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Gumbiner, B. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253:C749-C758; 1987.

    PubMed  CAS  Google Scholar 

  19. Gumbiner, B. Cell adhesion molecules in epithelia. In: Cereijido, M., ed. Tight junctions. Boca Raton: CRC Press; 1992:91–104.

    Google Scholar 

  20. Hidalgo, I. J.; Raub, T. J.; Borchardt, R. T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749; 1989.

    PubMed  CAS  Google Scholar 

  21. Janecki, A.; Jakubowiak, A.; Steinberger, A. Regulation of transepithelial electrical resistance in two-compartment sertoli cell cultures: in vitro model of the blood-testis barrier. Endocrinology 129:1489–1496; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Jovov, B.; Wills, N. K.; Lewis, S. A. A spectroscopic method for assessing confluence of epithelial cell cultures. Am. J. Physiol. 261:C1196-C1203; 1991.

    PubMed  CAS  Google Scholar 

  23. Madara, J. L. Relationships between the tight junction and the cytoskeleton. In: Cereijido, M., ed. Tight junctions. Boca Raton: CRC Press; 1992:105–119.

    Google Scholar 

  24. Madara, J. L.; Parcos, C.; Colgan, S., et al. The movement of solutes and cells across tight junctions. Ann. NY Acad. Sci. 664:47–60; 1992.

    Article  PubMed  CAS  Google Scholar 

  25. McMartin, K. E.; Morshed, K. M.; Hazen-Martin, D. J., et al. Folate transport and binding by cultured human proximal tubule cells. Am. J. Physiol. 263:F841-F848; 1992.

    PubMed  CAS  Google Scholar 

  26. McRoberts, J. A.; Aranda, R.; Riley, N., et al. Insulin regulates the paracellular permeability of cultured intestinal epithelial cell monolayers. J. Clin. Invest. 85:1127–1134; 1990.

    PubMed  CAS  Google Scholar 

  27. Meza, I.; Ibarra, G.; Sabanero, M., et al. Insulin regulates the paracellular permeability of cultured intestinal epithelial cell monolayers. J. Clin. Invest. 85:1127–1134; 1990.

    Article  Google Scholar 

  28. Meza, I.; Ibarra, G.; Sabanero, M., et al. Occluding junctions and cytokskeletal components in a cultured transporting epithelium. J. Cell Biol. 87:746–754; 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Pitelka, D. R.; Taggart, B. N.; Hamamoto, S. T. Effects of extracellular calcium depletion on membrane topography and occluding junctions of mammary epithelial cells in culture. J. Cell Biol. 96:613–624, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Steele, R. E.; Handler, J. S.; Preston, A., et al. A device for sterile measurement of transepithelial electrical parameters of cultured cells. J. Tissue Cult. Meth. 14(4):259–263; 1992.

    Article  Google Scholar 

  31. Wade, J. B.; Revel, J.-P.; DiScala, V. A. Effect of osmotic gradients on intercellular junctions of the toad bladder. Am. J. Physiol. 224:407–415; 1973.

    PubMed  CAS  Google Scholar 

  32. Weiner, M.; Mudge, G. H. Renal tubular mechanisms for excretion of organic acids and bases. Am. J. Med. 36:743–762; 1964.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morshed, K.M., McMartin, K.E. Transient alterations in cellular permeability in cultured human proximal tubule cells: Implications for transport studies. In Vitro Cell Dev Biol - Animal 31, 107–114 (1995). https://doi.org/10.1007/BF02633970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633970

Key words

Navigation