Skip to main content
Log in

Primary cultures of normal rat kidney proximal tubule epithelial cells for studies of renal cell injury

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology – Animal Aims and scope Submit manuscript

Summary

Normal rat kidney proximal tubule epithelial cell cultures were obtained by collagenase digestion of cortex and studied for 10 days. To assess the purity of the seeding suspension, we histochemically demonstrated γ-glutamyltranspeptidase in >95% of the starting material. To identify cell types in cultures, we investigated several markers. Cells stained positively for lectinArachis hypogaea (rat proximal tubule) and negatively forLotus tetragonolobus (rat distal tubule). Intermediate filament expression of cytokeratin confirmed the epithelial differentiation of the cultured cells. Using indirect immunofluorescence, we found that cultures were negative for vimentin and Factor VIII. Cells exhibited activities of two brush border enzymes, γ-glutamyltranspeptidase and leucine aminopeptidase, and Na+-dependent glucose transport activity. Multicellular domes were evident in the Week 2 of culture. Proliferation was studied by comparing growth factor-supplemented serum-free medium to cells grown in serum; growth enhancers included insulin, hydrocortisone, transferrin, glucose, bovine albumin, and epidermal growth factor. Cells proliferate best in medium with 5 or 10% serum and in serum-free medium supplemented with insulin, hydrocortisone, transferrin, glucose, and bovine albumin. Proliferation was assessed by determining cell number (population doublings). By light microscopy, the cells were squamous with numerous mitochondria, a central nucleus, and a rather well-defined homogeneous ectoplasm. By electron microscopy, the cells were polarized with microvilli and cell junctions at the upper surface and a thin basal lamina toward the culture dish. These data show that the proximal tubule epithelial cells retain a number of functional characteristics and that they represent an excellent model for studies of normal and abnormal biology of the renal proximal tubule epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refereces

  1. Amsler, K.; Cook, J. S. Development of Napl-dependent hexose transport in a cultured line of porcine kidney cells. Am. J. Physiol. 242:C94-C101; 1982.

    PubMed  CAS  Google Scholar 

  2. Appel, W. Leucine aminopeptidase. In: Bergmeyer, H. V., ed. Methods of enzymatic analysis, vol. 2. New York: Verlag Chemie Weinheim, Academic Press; 1974:954–963.

    Google Scholar 

  3. Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium: Review. Anal. Biochem. 102:255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Barnes, D. W.; Sato, G. H. Serum-free cell culture: an underlying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Bertolero, F.; Kaighn, M. E.; Camalier, R. F., et al. Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes. In Vitro Cell. Dev. Biol. 22:423–428; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Borenfreund, E.; Puerner, J. A. Cytotoxicity of metals, metal-metal and metal-chelator combinations assayedin vitro. Toxicology 39:121–134; 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  8. Burg, M.; Grantham, J.; Abramow, B., et al. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210:1293–1298; 1966.

    PubMed  CAS  Google Scholar 

  9. Cereijido, M.; Ehrenfeld, J.; Fernandez-Castelo, S., et al. Fluxes, junctions, and blisters in cultured layers of epitheliod cells (MDCK). Ann. NY Acad. Sci. 81:422–441; 1981.

    Article  Google Scholar 

  10. Chuman, L.; Fine, L. G.; Cohen, A. H., et al. Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium. J. Cell Biol. 94:506–510; 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Chung, S. D.; Alavi, N.; Livingston, D., et al. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J. Cell Biol. 95:118–126; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Curthoys, N. P.; Bellemann, P. Renal cortical cells in primary monolayer culture. Exp. Cell Res. 121:31–45; 1979.

    Article  PubMed  CAS  Google Scholar 

  13. Detrisac, C. J.; Sens, M. A.; Garvin, J., et al. Tissue culture of human epithelial cells of proximal tubule origin. Kidney Int. 25:383–390; 1984.

    PubMed  CAS  Google Scholar 

  14. Ferrari, S.; Cannizzaro, L. A.; Battini, R., et al. The gene encoding human vimentin is located on the short arm of chromosome 10. Am. J. Hum. Genet. 41:616–626; 1987.

    PubMed  CAS  Google Scholar 

  15. Fine, L. G., Sakhrani, L. M. Proximal tubular cells in primary culture. Miner. Electrolyte Metab. 12:51–57; 1986.

    PubMed  CAS  Google Scholar 

  16. Frielle, T.; Tong, J.; Cuthoys, N. P. Changes in rat renal glutaminase activity studiedin vivo and in primary cultures of proximal convoluted tubular cells. Contrib. Nephrol. 47:150–156; 1985.

    PubMed  CAS  Google Scholar 

  17. Glossmann, H.; Neville, D. M., Jr.γ-Glutamyltransferase in kidney brush border membranes. FEBS Lett. 19:340–344; 1972.

    Article  PubMed  CAS  Google Scholar 

  18. Grisham, J. W.; Smith, J. D.; Tsao, M. S. Colony forming ability in calcium-poor mediumin vitro and tumorigenicityin vivo coupled in clones of transformed rat hepatic epithelial cells. Cancer Res. 44:2831–2834; 1984.

    PubMed  CAS  Google Scholar 

  19. Grone, H. J.; Weber, K.; Grone, E., et al. Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney. Am. J. Pathol. 129:1–8; 1987.

    PubMed  CAS  Google Scholar 

  20. Ham, R. G. Survival and growth requirements of nontransformed cells. In: Baserga, R., ed. Tissue growth factors. New York: Springer-Veralg Berlin; 1981:13–88.

    Google Scholar 

  21. Ham, R. G.; St. Clair, J. A.; Webster, C., et al. Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum. In Vitro Cell. Dev. Biol. 24:833–844; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Hatzinger, P. B.; Chen, Q.; Dong, L., et al. Alterations in intermediate filament proteins in rat kidney proximal tubule epithelial cells. Biochem. Biophys. Res. Commun. 157:1316–1322; 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Hennings, H.; Michael, D.; Cheng, C., et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Jones, D. B. Scanning electron microscopy of basolateral surfaces of rat renal tubules isolated by sequential digestion. Anat. Rec. 213:121–130; 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Kaighn, M. E.; Camalier, R. F.; Bertolero, F., et al. Spontaneous establishment and characterization of mouse keratinocyte cell lines in serum-free medium. In Vitro Cell. Dev. Biol. 24:845–854; 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Kleinzeller, A.; McAvoy, E. M. Glucose transport and metabolism in rat renal proximal tubules: multicomponent effects of insulin. Biochim. Biophys. Acta. 856:545–555; 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Kulesz-Martin, M. F.; Koehler, B.; Hennings, H., et al. Quantitative assay for carcinogen altered differentiation in mouse epidermal cells. Carcinogenesis 1:995–1006; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar, A. M.; Spitzer, A.; Gupta, R. K. 23Na NMR spectroscopy of proximal tubule suspensions. Kidney Int. 29:747–751; 1986.

    PubMed  CAS  Google Scholar 

  29. Larsson, S.; Aperia, A.; Lechner, C. Studies on final differentiation of rat renal proximal tubular cells in culture. Am. J. Physiol. 251:C455-C464; 1986.

    PubMed  CAS  Google Scholar 

  30. Larsson, S. H.; Aperia, A.; Lechner, C. Studies on terminal differentiation of rat renal proximal tubular cells in culture: ouabain-sensitive K and Na transport. Acta. Physiol. Scand. 132:129–134; 1988.

    PubMed  CAS  Google Scholar 

  31. Lechner, J. F.; Haugen, A.; Autrup, H., et al. Clonal growth of epithelial cells from normal adult human bronchus. Cancer Res. 41:2294–2304; 1981.

    PubMed  CAS  Google Scholar 

  32. Lechner, J. F.; Haugen, A.; McClendon, I. A., et al. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro 18:633–642; 1982.

    PubMed  CAS  Google Scholar 

  33. Lechner, J. F. Interdependent regulation of epithelial cell replication by nutrients, hormones, growth factors, and cell density. Fed. Proc. 43:116–120; 1984.

    PubMed  CAS  Google Scholar 

  34. Le Hir, M.; Dubach, U. C. The cellular specificity of lectin binding in the kidney. II. A light microscopical study in the rabbit. Histochemistry 74:531–540; 1982.

    Article  PubMed  Google Scholar 

  35. Le Hir, M.; Kaissling, B.; Koeppen, B. M., et al. Binding of peanut lectin to specific epithelial cell types in kidney. Am. J. Physiol. 242:C117-C120; 1982.

    Google Scholar 

  36. Lever, J. E. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line: sodium electrochemical potential-mediated active sugar transport. J. Biol. Chem. 257:8680–8686; 1982.

    PubMed  CAS  Google Scholar 

  37. Lever, J. E. Expression of differentiated functions in kidney epithelial cell lines. Miner. Electrolyte Metab. 12:14–19; 1986.

    PubMed  CAS  Google Scholar 

  38. Lever, J. E.; Sari, C. E. Effect of tunicamycin on polarized membrane functions of an established kidney epithelial cell line. Biochim. Biophys. Acta 762:215–271; 1983.

    Article  Google Scholar 

  39. Lipman, R. D.; Harris, R. C.; Seifter, J. L., et al. Growth of rat proximal tubular cells (RPTC) occurs at the periphery of a colony, where cells are more alkaline and have a higher K/Na ratio. Kidney Int. 29:402–408; 1986.

    Google Scholar 

  40. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:269–275; 1951.

    Google Scholar 

  41. McLachlin, J. R.; Goyer, R. A.; Cherian, M. G. Formation of lead-induced inclusion bodies in primary rat kidney epithelial cell cultures: effect of actinomycin D and cyclohexidide. Toxicol. Appl. Pharmacol. 56:418–431; 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Malmi, R.; Soderstrom, K. O. Lectin binding to rat spermatogenic cells: effects of different fixation methods and proteolytic enzyme treatment. Histochem. J. 20:276–282; 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Masui, T.; Wakefield, L. M.; Lechner, J. F., et al. Typeβ transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Natl. Acad. Sci. USA 83:2438–2442; 1986.

    Article  PubMed  CAS  Google Scholar 

  44. Miller, J. H. Restricted growth of rat kidney proximal tubule cells cultured in serum-supplemented and defined media. J. Cell. Physiol. 129:264–272; 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Moran, A.; Handler, J. S.; Turner, J. R. Napl-dependent hexose transport in vesicles from cultured renal epithelial cell line. Am. J. Physiol. 243:C293-C298; 1982.

    PubMed  CAS  Google Scholar 

  46. Mullin, J. M.; Diamond, L.; Kleinzeller, A. Effects of ouabain and orthovanadate on transport-related properties of the LLC-PK1 renal epithelial cell line. J. Cell Physiol. 105:1–6; 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Mullin, J. M.; Weibel, J.; Diamond, L., et al. Sugar transport in the LLC-PK1 renal epithelial cell line: similarity to mammalian kidney and the influence of cell density. J. Cell Physiol. 104:375–389; 1980.

    Article  PubMed  CAS  Google Scholar 

  48. Phelps, P. C.; Smith, M. W.; Trump, B. F. Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells. Lab. Invest. 60:630–642; 1989.

    PubMed  CAS  Google Scholar 

  49. Rabito, C. A. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC-PK1). Biochim. Biophys. Acta 649:286–296; 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Rabito, C. A. Sodium co-transport processes in renal epithelial cell lines. Miner. Electrolyte Metab. 12:32–41; 1986.

    PubMed  CAS  Google Scholar 

  51. Resau, J. H.; Phelps, P. C.; He’, A., et al. Long-term culture of hamster duodenal explants and cells. Digestion 41:9–21; 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Rittling, S. R.; Baserga, R. Functional analysis and growth factor regulation of the human vimentin promoter. Mol. Cell. Biol. 7:3909–3915; 1987.

    Google Scholar 

  53. Rosenberg, M. R.; Michalopoulos, G. Kidney proximal tubular cells isolated by collagenase perfusion grow in defined media in the absence of growth factors. J. Cell Physiol. 131:107–113; 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Rutenburg, A. M.; Kim, H.; Fischbein, J. W., et al. Histochemical and ultrastructural demonstration of G-glutamyl transpeptidase activity. J. Histochem. Cytochem. 17:517–526; 1969.

    PubMed  CAS  Google Scholar 

  55. Sakhrani, L. M.; Badie-Dezfooly, B.; Trizna, W., et al. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. 246:F757-F764; 1984.

    PubMed  CAS  Google Scholar 

  56. Singh, B.; Goldman, R.; Hutton, L., et al. The P55 protein affected by v-mos expression is vimentin. J. Virol. 51:3625–3629; 1987.

    Google Scholar 

  57. Sole, M. J.; Madapallimattam, A.; Baines, A. D. An active pathway for serotonin synthesis by renal proximal tubules. Kidney Int. 29:689–694; 1986.

    PubMed  CAS  Google Scholar 

  58. Stanton, R. C.; Mendrick, D. L.; Rennke, H. G., et al. Use of monoclonal antibodies to culture rat proximal tubule cells. Am. J. Physiol. 251:C780-C786; 1986.

    PubMed  CAS  Google Scholar 

  59. Sugahara, K.; Caldwell, J. H.; Mason, R. J. Electrical currents flow out of domes formed by cultured epithelial cells. J. Cell Biol. 99:1541–1546; 1981.

    Article  Google Scholar 

  60. Suzuki, M.; Capparelli, A.; Jo, O., et al. Phosphate transport in thein vitro cultured rabbit proximal convoluted and straight tubules. Kidney Int. 34:268–272; 1988.

    PubMed  CAS  Google Scholar 

  61. Takehara, K.; LeRoy, E. C.; Grotendorst, G. R. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415–422; 1987.

    Article  PubMed  CAS  Google Scholar 

  62. Th’evenod, F.; Streb, H.; Ullrich, K. J., et al. Inositol 1,4,5-trisphosphate releases Ca2+ from a nonmitochondrial store site in permeabilized rat cortical kidney cells. Kidney Int. 29:695–702; 1986.

    CAS  Google Scholar 

  63. Trifillis, A. L.; Regec, A. L.; Trump, B. F. Isolation, culture and characterization of human renal tubular cells. J. Urol. 133:324–329; 1985.

    PubMed  CAS  Google Scholar 

  64. Trump, B. F.; Berezesky, I. K. Ion regulation, cell injury and carcinogenesis. Carcinogenesis 8:1027–1031; 1987.

    Article  PubMed  CAS  Google Scholar 

  65. Vinay, P.; Gougoux, A.; Lemieux, G. Isolation of a pure suspension of rat proximal tubules. Am. J. Physiol. 241:F403-F411; 1981.

    PubMed  CAS  Google Scholar 

  66. Wagner, S.; Deufel, T.; Guder, W. G. Carnitine metabolism in isolated rat kidney cortex tubules. Biol. Chem. Hoppe Seyler 367:75–79; 1986.

    PubMed  CAS  Google Scholar 

  67. Yuspa S. H.; Koehler, B.; Kulesz-Martin, M., et al. Clonal growth of mouse epidermal cells in medium with reduced calcium concentration. J. Invest. Dermatol. 76:144–146; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by grant 2-R01-DK15440-16A1 from the National Institutes of Health, Bethesda, MD, and by grant N0001 4-88-K-0427 from the Department of the Navy, Washington, DC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliget, K.A., Trump, B.F. Primary cultures of normal rat kidney proximal tubule epithelial cells for studies of renal cell injury. In Vitro Cell Dev Biol – Animal 27, 739–748 (1991). https://doi.org/10.1007/BF02633220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633220

Key words

Navigation