Skip to main content
Log in

Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The kidney is a complex organ, comprised primarily of glomerular, tubular, mesangial, and endothelial cells, and podocytes. The fact that renal cells are terminally differentiated at 34 weeks of gestation is the main obstacle in regeneration and treatment of acute kidney injury or chronic kidney disease. Furthermore, the number of chronic kidney disease patients is ever increasing and with it the medical community should aim to improve existing and develop new methods of renal replacement therapy. On the other hand, as polypharmacy is on the rise, thought should be given into developing new ways of testing drug safety. A possible way to tackle these issues is with isolation and culture of renal cells. Several protocols are currently described to isolate the desired cells, of which the most isolated are the proximal tubular epithelial cells. They play a major role in water homeostasis, acid–base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When exposed to ischemic, toxic, septic, or obstructive conditions their death results in what we clinically perceive as acute kidney injury. Additionally, due to renal cells' limited regenerative potential, the profibrotic environment inevitably leads to chronic kidney disease. In this review we will focus on human proximal tubular epithelial cells. We will cover human kidney culture models, cell sources, isolation, culture, immortalization, and characterization subdivided into morphological, phenotypical, and functional characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAP:

Alanine aminopeptidase

ABC:

ATP-binding cassette

ACE:

Angiotensin-converting enzyme

AEC:

Adenylate energy charge

AKI:

Acute kidney injury

Albumin-FITC:

Albumin-fluorescein isothiocyanate conjugate protein bovine

ALP:

Alkaline phosphatase

AQP:

Aquaporin

ASO:

Antisense oligonucleotide

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

AVP:

Arginine vasopressin

BAK:

Bioartificial kidney

BCRP:

Breast cancer resistance protein

CD:

Cluster of differentiation

ciPTEC:

Conditionally immortalized proximal tubular epithelial cells

ciPTEC-T:

Conditionally immortalized proximal tubular epithelial cells isolated from tissue

ciPTEC-U:

Conditionally immortalized proximal tubular epithelial cells isolated from urine

CKD:

Chronic kidney disease

CLDN:

Claudin

CYP:

Cytochrome

DPP:

Dipeptidyl peptidase

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

FACS:

Fluorescence-activated cell sorting

FBP:

Fructose-1,6-bisphosphatase

FMO:

Flavin monooxygenase

G6PD:

Glucose-6-phosphate dehydrogenase

GGT:

γ-Glutamyl transpeptidase

GLUT:

Glucose transporter

GSH:

Glutathione

GSSG:

Glutathione disulphide

GST:

Glutathione S-transferase

HD:

Hemodialysis

HK-2:

Human kidney 2

HKC:

Human kidney tubule cell

HPLC:

High-performance liquid chromatography

hTERT:

Human telomerase reverse transcriptase

LAP:

Leucine aminopeptidase

LDH:

Lactate dehydrogenase

LSC:

Liquid scintillation counting

LC–MS:

Liquid chromatography-mass spectrometry

MATE:

Multidrug and toxin extrusion

MDR:

Multidrug resistance

MRP:

Multidrug resistance-associated protein

NADH:

Nicotine adenine dinucleotide

NCAM:

Neural cell adhesion molecule

NEP:

Neutral endopeptidase

NP:

Nephron progenitors

OAT:

Organic anion transporter

OCT:

Organic cation transporter

OCTN:

Organic cation/carnitine transporter

OSR:

Odd-skipped related

PBMC:

Peripheral blood mononuclear cells

P-gp:

P-glycoprotein

PT:

Proximal tubule

PTEC:

Proximal tubular epithelial cells

PTH:

Parathyroid hormone

RNAi:

Interference RNA

RRT:

Renal replacement therapy

SGLT:

Sodium-glucose cotransporter

SLC:

Solute carrier

SV40T:

SV40 large T antigen

TEER:

Transepithelial/transendothelial electrical resistance

UB:

Ureteric bud

UGT:

UDP-glucuronosyltransferase

ZO:

Zonula occludens

References

  1. Ferenbach DA, Bonventre JV (2016) Acute kidney injury and chronic kidney disease: from the laboratory to the clinic. Nephrol Ther 12(Suppl 1):S41–S48

    PubMed  PubMed Central  Google Scholar 

  2. Murphy D, McCulloch CE, Lin F, Banerjee T, Bragg-Gresham JL, Eberhardt MS et al (2016) Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med 165(7):473–481

    PubMed  PubMed Central  Google Scholar 

  3. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395(10225):709–733

    Google Scholar 

  4. Hemodialysis Adequacy 2006 Work Group (2006) Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 48(Suppl 1):S2–S90

    Google Scholar 

  5. Kramer A, Boenink R, Noordzij M, Bosdriesz JR, Stel VS, Beltrán P et al (2020) The ERA-EDTA Registry Annual Report 2017: a summary. Clin Kidney J 13(4):693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mihajlovic M, van den Heuvel LP, Hoenderop JG, Jansen J, Wilmer MJ, Westheim AJF et al (2017) Allostimulatory capacity of conditionally immortalized proximal tubule cell lines for bioartificial kidney application. Sci Rep 7(1):7103

    PubMed  PubMed Central  Google Scholar 

  7. Davies JA, Chang CH, Lawrence ML, Mills CG, Mullins JJ (2014) Engineered kidneys: principles, progress, and prospects. Adv Regen Biol 1(1):24990

    Google Scholar 

  8. Jansen J, De Napoli IE, Fedecostante M, Schophuizen CM, Chevtchik NV, Wilmer MJ et al (2015) Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations. Sci Rep 5:16702

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Naughton CA (2008) Drug-induced nephrotoxicity. Am Fam Physician 78(6):743–750

    PubMed  Google Scholar 

  10. Davies JA (2015) Self-organized kidney rudiments: prospects for better in vitro nephrotoxicity assays. Biomarker Insights 10(Suppl 1):117–123

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sochol RD, Gupta NR, Bonventre JV (2016) A role for 3D printing in kidney-on-a-chip platforms. Curr Transplant Rep 3(1):82–92

    PubMed  PubMed Central  Google Scholar 

  12. DesRochers TM, Palma E, Kaplan DL (2014) Tissue-engineered kidney disease models. Adv Drug Deliv Rev 69–70:67–80

    PubMed  Google Scholar 

  13. Davies J (2014) Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discov Today 19(6):725–729

    CAS  PubMed  Google Scholar 

  14. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134(1):82–106

    CAS  PubMed  Google Scholar 

  15. Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B (1994) HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 45(1):48–57

    CAS  PubMed  Google Scholar 

  16. Tang S, Leung JC, Lam CW, Lai FM, Chan TM, Lai KN (2001) In vitro studies of aquaporins 1 and 3 expression in cultured human proximal tubular cells: upregulation by transferrin but not albumin. Am J Kidney Dis 38(2):317–330

    CAS  PubMed  Google Scholar 

  17. Wu Y, Connors D, Barber L, Jayachandra S, Hanumegowda UM, Adams SP (2009) Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds. Toxicol In Vitro 23(6):1170–1178

    CAS  PubMed  Google Scholar 

  18. Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CD (2012) The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch 464(6):601–611

    CAS  PubMed  Google Scholar 

  19. Racusen LC, Monteil C, Sgrignoli A, Lucskay M, Marouillat S, Rhim JG et al (1997) Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med 129(3):318–329

    CAS  PubMed  Google Scholar 

  20. Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P et al (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295(5):F1365–F1375

    CAS  PubMed  Google Scholar 

  21. Simon BR, Wilson MJ, Wickliffe JK (2014) The RPTEC/TERT1 cell line models key renal cell responses to the environmental toxicants, benzo[a]pyrene and cadmium. Toxicol Rep 1:231–242

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aschauer L, Limonciel A, Wilmes A, Stanzel S, Kopp-Schneider A, Hewitt P et al (2015) Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: a transcriptomic study. Toxicol In Vitro 30(1 Pt A):106–116

    CAS  PubMed  Google Scholar 

  23. Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG et al (2010) Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339(2):449–457

    PubMed  Google Scholar 

  24. Jansen J, Schophuizen CM, Wilmer MJ, Lahham SH, Mutsaers HA, Wetzels JF et al (2014) A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue. Exp Cell Res 323(1):87–99

    CAS  PubMed  Google Scholar 

  25. Detrisac CJ, Sens MA, Garvin AJ, Spicer SS, Sens DA (1984) Tissue culture of human kidney epithelial cells of proximal tubule origin. Kidney Int 25(2):383–390

    CAS  PubMed  Google Scholar 

  26. Nugraha B, Mohr MA, Ponti A, Emmert MY, Weibel F, Hoerstrup SP et al (2017) Monitoring and manipulating cellular crosstalk during kidney fibrosis inside a 3D in vitro co-culture. Sci Rep 7(1):14490

    PubMed  PubMed Central  Google Scholar 

  27. Sanechika N, Sawada K, Usui Y, Hanai K, Kakuta T, Suzuki H et al (2011) Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells. Nephrol Dial Transplant 26(9):2761–2769

    CAS  PubMed  Google Scholar 

  28. Van der Hauwaert C, Savary G, Gnemmi V, Glowacki F, Pottier N, Bouillez A et al (2013) Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling. PLoS ONE 8(6):e66750

    PubMed  PubMed Central  Google Scholar 

  29. Jang K-J, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh K-Y et al (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 5(9):1119–1129

    CAS  Google Scholar 

  30. Ng CP, Zhuang Y, Lin AWH, Teo JCM (2013) A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. Int J Tissue Eng 2013:10

    Google Scholar 

  31. Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A et al (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Weber EJ, Chapron A, Chapron BD, Voellinger JL, Lidberg KA, Yeung CK et al (2016) Development of a microphysiological model of human kidney proximal tubule function. Kidney Int 90(3):627–637

    PubMed  PubMed Central  Google Scholar 

  33. King SM, Higgins JW, Nino CR, Smith TR, Paffenroth EH, Fairbairn CE et al (2017) 3D Proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front Physiol 8:123

    PubMed  PubMed Central  Google Scholar 

  34. Fedecostante M, Westphal KGC, Buono MF, Sanchez Romero N, Wilmer MJ, Kerkering J et al (2018) Recellularized native kidney scaffolds as a novel tool in nephrotoxicity screening. Drug Metab Dispos 46(9):1338–1350

    CAS  PubMed  Google Scholar 

  35. Vriend J, Nieskens TTG, Vormann MK, van den Berge BT, van den Heuvel A, Russel FGM et al (2018) Screening of drug-transporter interactions in a 3D microfluidic renal proximal tubule on a chip. Aaps J 20(5):87

    PubMed  Google Scholar 

  36. Nieskens TT, Wilmer MJ (2016) Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol 790:46–56

    CAS  PubMed  Google Scholar 

  37. Schlondorff D (1986) Isolation and use of specific nephron segments and their cells in biochemical studies. Kidney Int 30(2):201–207

    CAS  PubMed  Google Scholar 

  38. Pfaller W, Gstraunthaler G (1998) Nephrotoxicity testing in vitro—what we know and what we need to know. Environ Health Perspect 106(Suppl 2):559–569

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Eneko M, Andraž S, Sebastjan B, Uroš M (2019) In vitro toxicity model: upgrades to bridge the gap between preclinical and clinical research. Bosn J Basic Med Sci 20(2):157–168

    Google Scholar 

  40. Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS (2018) Kidney-on-a-chip: untapped opportunities. Kidney Int 94(6):1073–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakolish CM, Esch MB, Hickman JJ, Shuler ML, Mahler GJ (2016) modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine 5(Supplement C):30–39

    PubMed  PubMed Central  Google Scholar 

  42. Sharpe CC, Dockrell ME (2012) Primary culture of human renal proximal tubule epithelial cells and interstitial fibroblasts. Methods Mol Biol 806:175–185

    CAS  PubMed  Google Scholar 

  43. Lipps C, May T, Hauser H, Wirth D (2013) Eternity and functionality—rational access to physiologically relevant cell lines. Biol Chem 394(12):1637–1648

    CAS  PubMed  Google Scholar 

  44. Brown CD, Sayer R, Windass AS, Haslam IS, De Broe ME, D’Haese PC et al (2008) Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling. Toxicol Appl Pharmacol 233(3):428–438

    CAS  PubMed  Google Scholar 

  45. Valente MJ, Henrique R, Costa VL, Jerónimo C, Carvalho F, Bastos ML et al (2011) A rapid and simple procedure for the establishment of human normal and cancer renal primary cell cultures from surgical specimens. PLoS ONE 6(5):e19337

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Masereeuw R, Vriend J, Wilmer MJ (2017) Chapter 82—kidney-on-a-chip: technologies for studying pharmacological and therapeutic approaches to kidney repair. In: Orlando G, Remuzzi G, Williams DF (eds) Kidney transplantation, bioengineering and regeneration. Academic Press, London, pp 1119–1133

    Google Scholar 

  47. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE et al (1999) MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88(1):28–33

    CAS  PubMed  Google Scholar 

  48. Maqsood MI, Matin MM, Bahrami AR, Ghasroldasht MM (2013) Immortality of cell lines: challenges and advantages of establishment. Cell Biol Int 37(10):1038–1045

    PubMed  Google Scholar 

  49. Baer PC, Geiger H (2008) Human renal cells from the thick ascending limb and early distal tubule: characterization of primary isolated and cultured cells by reverse transcription polymerase chain reaction. Nephrology (Carlton) 13(4):316–321

    CAS  Google Scholar 

  50. Li S, Zhao J, Huang R, Steiner T, Bourner M, Mitchell M et al (2017) Development and application of human renal proximal tubule epithelial cells for assessment of compound toxicity. Curr Chem Genom Transl Med 11:19–30

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nieskens TT, Peters JG, Schreurs MJ, Smits N, Woestenenk R, Jansen K et al (2016) A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. Aaps J 18(2):465–475

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morizane R, Miyoshi T, Bonventre JV (2017) Concise review: kidney generation with human pluripotent stem cells. Stem cells 35(11):2209–2217

    PubMed  PubMed Central  Google Scholar 

  53. Tanigawa S, Taguchi A, Sharma N, Perantoni Alan O, Nishinakamura R (2016) Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Reports 15(4):801–813

    CAS  PubMed  Google Scholar 

  54. Kaku Y, Taguchi A, Tanigawa S, Haque F, Sakuma T, Yamamoto T et al (2017) PAX2 is dispensable for in vitro nephron formation from human induced pluripotent stem cells. Scientific reports 7(1):4554

    PubMed  PubMed Central  Google Scholar 

  55. Taguchi A, Nishinakamura R (2017) Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21(6):730–46.e6

    CAS  PubMed  Google Scholar 

  56. Tanigawa S, Nishinakamura R (2016) Expanding nephron progenitors in vitro: a step toward regenerative medicine in nephrology. Kidney Int 90(5):925–927

    PubMed  Google Scholar 

  57. Becherucci F, Mazzinghi B, Allinovi M, Angelotti ML, Romagnani P (2018) Regenerating the kidney using human pluripotent stem cells and renal progenitors. Expert Opin Biol Ther 18(7):795–806

    CAS  PubMed  Google Scholar 

  58. Francipane MG, Lagasse E (2016) Pluripotent stem cells to rebuild a kidney: the lymph node as a possible developmental niche. Cell Transplant 25(6):1007–1023

    PubMed  Google Scholar 

  59. Chuah JKC, Zink D (2017) Stem cell-derived kidney cells and organoids: recent breakthroughs and emerging applications. Biotechnol Adv 35(2):150–167

    CAS  PubMed  Google Scholar 

  60. Nguyen L, Spitzhorn LS, Adjaye J (2019) Constructing an isogenic 3D human nephrogenic progenitor cell model composed of endothelial, mesenchymal, and SIX2-positive renal progenitor cells. Stem Cells Int 2019:3298432

    PubMed  PubMed Central  Google Scholar 

  61. Morizane R, Lam AQ (2015) Directed differentiation of pluripotent stem cells into kidney. Biomark Insights 10(Suppl 1):147–152

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Du C, Narayanan K, Leong MF, Ibrahim MS, Chua YP, Khoo VM et al (2016) Functional kidney bioengineering with pluripotent stem-cell-derived renal progenitor cells and decellularized kidney scaffolds. Adv Healthc Mater 5(16):2080–2091

    CAS  PubMed  Google Scholar 

  63. Hiratsuka K, Monkawa T, Akiyama T, Nakatake Y, Oda M, Goparaju SK et al (2019) Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Sci Rep 9(1):913

    PubMed  PubMed Central  Google Scholar 

  64. Zhuo JL, Li XC (2013) Proximal nephron. Compr Physiol 3(3):1079–1123

    PubMed  PubMed Central  Google Scholar 

  65. Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V (2015) Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol CJASN 10(11):2039–2049

    CAS  PubMed  Google Scholar 

  66. Wagner MC, Molitoris BA (1999) Renal epithelial polarity in health and disease. Pediatr Nephrol 13(2):163–170

    CAS  PubMed  Google Scholar 

  67. Hoppensack A, Kazanecki CC, Colter D, Gosiewska A, Schanz J, Walles H et al (2014) A human in vitro model that mimics the renal proximal tubule. Tissue Eng Part C Methods 20(7):599–609

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Verlander JW (1998) Normal ultrastructure of the kidney and lower urinary tract. Toxicol Pathol 26(1):1–17

    CAS  PubMed  Google Scholar 

  69. Kriz W, Elger M, Floege J, Johnson RJ, Feehally J (2010) Chapter 1—renal anatomy. Mosby, Philadelphia, pp 3–14

    Google Scholar 

  70. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Automat 20(2):107–126

    CAS  Google Scholar 

  71. Secker PF, Luks L, Schlichenmaier N, Dietrich DR (2018) RPTEC/TERT1 cells form highly differentiated tubules when cultured in a 3D matrix. Altex 35(2):223–234

    PubMed  Google Scholar 

  72. Sánchez-Romero N, Martínez-Gimeno L, Caetano-Pinto P, Saez B, Sánchez-Zalabardo JM, Masereeuw R et al (2019) A simple method for the isolation and detailed characterization of primary human proximal tubule cells for renal replacement therapy. Int J Artif Org. https://doi.org/10.1177/0391398819866458

    Article  Google Scholar 

  73. Legouis D, Bataille A, Hertig A, Vandermeersch S, Simon N, Rondeau E et al (2015) Ex vivo analysis of renal proximal tubular cells. BMC Cell Biol 16:12

    PubMed  PubMed Central  Google Scholar 

  74. Waring WS, Moonie A (2011) Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol (Phila) 49:720–728

    CAS  Google Scholar 

  75. Kotlo K, Shukla S, Tawar U, Skidgel RA, Danziger RS (2007) Aminopeptidase N reduces basolateral Na+-K+-ATPase in proximal tubule cells. Am J Physiol Renal Physiol 293(4):F1047–F1053

    CAS  PubMed  Google Scholar 

  76. Andersen KJ, Maunsbach AB, Christensen EI (1998) Biochemical and ultrastructural characterization of fluid transporting LLC-PK1 microspheres. J Am Soc Nephrol 9(7):1153–1168

    CAS  PubMed  Google Scholar 

  77. Vio CP, Salas D, Cespedes C, Diaz-Elizondo J, Mendez N, Alcayaga J et al (2018) Imbalance in renal vasoactive enzymes induced by mild hypoxia: angiotensin-converting enzyme increases while neutral endopeptidase decreases. Front Physiol. https://doi.org/10.3389/fphys.2018.01791

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sakolish CM, Philip B, Mahler GJ (2019) A human proximal tubule-on-a-chip to study renal disease and toxicity. Biomicrofluidics 13(1):014107

    PubMed  PubMed Central  Google Scholar 

  79. Yeste J, Illa X, Alvarez M, Villa R (2018) Engineering and monitoring cellular barrier models. J Biol Eng. 12:18

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lash LH (2016) Predictive in vitro models for assessment of nephrotoxicity and drug–drug interactions in vitro. Drug Discov Toxicol. https://doi.org/10.1002/9781119053248.ch10

    Article  Google Scholar 

  81. Yin J, Wang J (2016) Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 6(5):363–373

    PubMed  PubMed Central  Google Scholar 

  82. Vedula EM, Alonso JL, Arnaout MA, Charest JL (2017) A microfluidic renal proximal tubule with active reabsorptive function. PLoS ONE 12(10):e0184330

    PubMed  PubMed Central  Google Scholar 

  83. Caetano-Pinto P, Janssen MJ, Gijzen L, Verscheijden L, Wilmer MJ, Masereeuw R (2016) Fluorescence-based transport assays revisited in a human renal proximal tubule cell line. Mol Pharm 13(3):933–944

    CAS  PubMed  Google Scholar 

  84. Vormann MK, Gijzen L, Hutter S, Boot L, Nicolas A, van den Heuvel A et al (2018) Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. Aaps J 20(5):90

    PubMed  Google Scholar 

  85. Kumari M, Sharma R, Pandey G, Ecelbarger CM, Mishra P, Tiwari S (2019) Deletion of insulin receptor in the proximal tubule and fasting augment albumin excretion. J Cell Biochem 120(6):10688–10696

    CAS  PubMed  Google Scholar 

  86. Diekjurgen D, Grainger DW (2018) Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model. Pflugers Arch 470(9):1311–1323

    CAS  PubMed  Google Scholar 

  87. Knights KM, Rowland A, Miners JO (2013) Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 76(4):587–602

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shah H, Patel M, Shrivastava N (2017) Gene expression study of phase I and II metabolizing enzymes in RPTEC/TERT1 cell line: application in in vitro nephrotoxicity prediction. Xenobiotica 47(10):837–843

    CAS  PubMed  Google Scholar 

  89. Lash LH, Putt DA, Cai H (2008) Drug metabolism enzyme expression and activity in primary cultures of human proximal tubular cells. Toxicology 244(1):56–65

    CAS  PubMed  Google Scholar 

  90. Wang Z, Senn T, Kalhorn T, Zheng XE, Zheng S, Davis CL et al (2011) Simultaneous measurement of plasma vitamin D(3) metabolites, including 4β,25-dihydroxyvitamin D(3), using liquid chromatography-tandem mass spectrometry. Anal Biochem 418(1):126–133

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13(10):629–646

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lash LH, Putt DA, Hueni SE, Krause RJ, Elfarra AA (2003) Roles of necrosis, Apoptosis, and mitochondrial dysfunction in S-(1,2-dichlorovinyl)-L-cysteine sulfoxide-induced cytotoxicity in primary cultures of human renal proximal tubular cells. J Pharmacol Exp Ther 305(3):1163–1172

    CAS  PubMed  Google Scholar 

  93. Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83(1):72–83

    CAS  PubMed  Google Scholar 

  94. Xu F, Papanayotou I, Putt DA, Wang J, Lash LH (2008) Role of mitochondrial dysfunction in cellular responses to S-(1,2-dichlorovinyl)-l-cysteine in primary cultures of human proximal tubular cells. Biochem Pharmacol 76(4):552–567

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM et al (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol JASN 27(11):3356–3367

    CAS  PubMed  Google Scholar 

  96. Conjard-Duplany A, Martin M, Guitton J, Baverel G, Ferrier B (2001) Gluconeogenesis from glutamine and lactate in the isolated humanrenal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem J. https://doi.org/10.1042/0264-6021:3600371

    Article  Google Scholar 

  97. Curthoys NP, Gstraunthaler G (2014) pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 307(1):F1–F11

    CAS  PubMed  PubMed Central  Google Scholar 

  98. De la Fuente IM, Cortés JM, Valero E, Desroches M, Rodrigues S, Malaina I et al (2014) On the dynamics of the adenylate energy system: homeorhesis vs homeostasis. PLoS ONE 9(10):e108676

    PubMed  PubMed Central  Google Scholar 

  99. Sumayao R Jr, Newsholme P, McMorrow T (2018) The role of cystinosin in the intermediary thiol metabolism and redox homeostasis in kidney proximal tubular Cells. Antioxidants (Basel, Switzerland) 7(12):179

    Google Scholar 

  100. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. https://doi.org/10.1155/2014/360438

    Article  PubMed  PubMed Central  Google Scholar 

  102. Crean D, Bellwon P, Aschauer L, Limonciel A, Moenks K, Hewitt P et al (2015) Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing. Toxicol In Vitro 30(1):128–137

    CAS  PubMed  Google Scholar 

  103. Lash LH, Putt DA, Hueni SE, Cao W, Xu F, Kulidjian SJ et al (2002) Cellular energetics and glutathione status in NRK-52E cells: toxicological implications. Biochem Pharmacol 64(10):1533–1546

    CAS  PubMed  Google Scholar 

  104. Long KR, Shipman KE, Rbaibi Y, Menshikova EV, Ritov VB, Eshbach ML et al (2017) Proximal tubule apical endocytosis is modulated by fluid shear stress via an mTOR-dependent pathway. Mol Biol Cell 28(19):2508–2517

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Winther JR, Thorpe C (2014) Quantification of thiols and disulfides. Biochem Biophys Acta 1840(2):838–846

    CAS  PubMed  Google Scholar 

  106. Cristóbal-García M, García-Arroyo FE, Tapia E, Osorio H, Arellano-Buendía AS, Madero M et al (2015) Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension. Oxid Med Cell Longev. https://doi.org/10.1155/2015/535686

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded from the Slovenian Research Agency (Grant Numbers: P3-0036, L4-1843), and from the University Medical Centre Maribor, Grant Number: IRP 2018/01-07.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uroš Maver or Sebastjan Bevc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihevc, M., Petreski, T., Maver, U. et al. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 47, 9865–9882 (2020). https://doi.org/10.1007/s11033-020-05977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05977-4

Keywords

Navigation