Skip to main content
Log in

Spontaneous establishment and characterization of mouse keratinocyte cell lines in serum-free medium

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor's Statement Keratinocytes are useful and important models for studies of carcinogenesis and tumor promotion and differentiation. This paper provides a solid in vitro basis for examination of the cellular endocrinology of these phenomena in vitro, and implicates TGF beta as a regulator of these cells.

Summary

Mouse keratinocytes cultures readily develop into established cell lines without undergoing a “crisis” in a newly-developed serum-free medium, LEP/MK2. LEP/MK2 consists of calcium-free MEM with non-essential amino acids supplemented with 8 factors. Two lines, MK1 and MKDC4, have been isolated and have now doubled more than 400 and 200 times respectively. In MK1 cells, Giemsa banding has revealed significant karyotypic changes as early as the 4th passage, leading to a near-tetraploid karyotype with random loss and gain of individual chromosomes. Minute chromosomes, but no stable markers have been observed. After these initial changes, examination of cultures at several passage levels has shown that the karyotype has remained essentially stable. The MKDC4 line, also sub-tetraploid at the 7th passage, had 4 marker chromosomes by the 47th passage. The rapid increase in chromosome number may have contributed to the “immortalization” of these lines.

The response of these established keratinocyte lines to growth factors and serum-derived inhibitors changed with increasing passage level. Most notable of these changes were a reduction in the requirement for bovine pituitary extract (an absolute requirement for growth of secondary MK1 cells) and a decreased sensitivity to serum and serum-derived inhibitors, e.g., transforming growth factor-β. The established lines, like primary and secondary keratinocytes, remain responsive to calcium-induced terminal differentiation and are non-tumorigenic in athymic, nude mice. This serum-free system is suitable for transformation studies with oncogenes and chemical carcinogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Berenblum, I.; Shubik, P. The role of croton oil applications associated with a single painting of a carcinogen, in tumour induction of the mouse's skin. Br. J. Cancer 1:379–382; 1947.

    PubMed  CAS  Google Scholar 

  2. Berenblum, I.; Shubik, P. An experimental study of the initiating stage of carcinogenesis and a re-examination of the somatic mutation theory of cancer. Br. J. Cancer 3:109–118; 1949.

    CAS  PubMed  Google Scholar 

  3. Bertolero, F.; Kaighn, M. E.; Camalier, R. F., et al. Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes. In Vitro 22:423–428; 1986.

    CAS  Google Scholar 

  4. Bertolero, F.; Kaighn, M. E.; Gonda, M. A., et al. Mouse epidermal keratinocytes. Clonal proliferation and response to hormones and growth factors in serum-free medium. Exper. Cell Res. 115:64–80; 1984.

    Article  Google Scholar 

  5. Boyce, B. A.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81:33s-40s; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Conti, C. J.; Aldaz, C. M.; O'Connell, J., et al. Aneuploidy, and early event in mouse skin tumor development. Carcinogenesis 7:1845–1848; 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Del Giudice, R.; Hopps, H. E. Microbiological methods and fluorescent microscopy for the direct demonstration of mycoplasma infection of cell cultures. In: McGarrity, G. J.; Murphy, D. G.; Nichols, W. W.; eds. Mycoplasma infection of cell cultures. New York: Plenum Publ.; 1978:57–69.

    Google Scholar 

  8. Dzarlieva-Petruševska, R. T.; Fusenig, N. E. Tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced chromosome aberrations in mouse keratinocyte cell lines: a possible genetic mechanism of tumor promotion. Carcinogenesis 6:1447–1456; 1985.

    Article  PubMed  Google Scholar 

  9. Fusenig, N. E.; Breitkreutz, D.; Dzarlieva, R. T., et al. Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol. 81:168s-175s; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Halton, D. M.; Peterson, W. D., Jr.; Hukku, B. Cell culture quality control by rapid isoenzymatic characterization. In Vitro 19:16–24; 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Hennings, H.; Michael, D.; Cheng, C., et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Indo, K.; Miyaji, H. Malignant transformation of a cloned, nontumorigenic mouse epidermal keratinocyte cell line, MSK-C3H-NU, by 7,12-dimethylbenz(a)anthrancene. Cancer Res. 45:774–782; 1985.

    PubMed  CAS  Google Scholar 

  13. Kaighn, M. E.; Lerman, M. I.; Camalier, R. F., et al. Effect of cloned oncogenes on growth and differentiation of normal mouse keratinocytes in serum-free medium. J. Cell Biol. 103:32a; 1986.

    Google Scholar 

  14. Kulesz-Martin, M.; Kilkenny, A. E.; Holbrook, K. A., et al. Properties of carcinogen altered mouse epidermal cells resistant to calcium-induced terminal differentiation. Carcinogenesis 4:1367–1377; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Kulesz-Martin, M. F.; Koehler, B.; Hennings, H., et al. Quantitative assay for carcinogen altered differentiation in mouse epidermal cells. Carcinogenesis 1:995–1006; 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Kulesz-Martin, M.; Yoshida, Y. A.; Prestine, L., et al. Mouse cell clones for improved quantitation of carcinogen-induced altered differentiation. Carcinogenesis 6:1245–1254; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Lechner, J. F.; LaVeck, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.

    Article  Google Scholar 

  18. Liberti, J. P. Purification of bovine somatomedin. Biochem. Biophys. Res. Commun. 67:1226–1233; 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Like, B.; Massagué, J. The antiproliferative effect of type β transforming growth factor occurs at a level distal from receptors for growth-activating factors. J. Biol. Chem. 261:13426–13429; 1986.

    PubMed  CAS  Google Scholar 

  20. Loo, D. T.; Fuquay, J. I.; Rawson, C. L., et al. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236:200–202; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Massagué, J. The TGF-β family of growth and differentiation factors. Cell 49:437–438; 1987.

    Article  PubMed  Google Scholar 

  22. Masui, T.; Wakefield, L. M.; Lechner, J. F., et al. Type β transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Natl. Acad. Sci. USA 83:2438–2442; 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Pera, M. F.; Gorman, P. A. In vitro analysis of multistage epidermal carcinogenesis: development of indefinite renewal capacity and reduced growth factor requirements in colony forming keratinocytes precedes malignant transformation. Carcinogenesis 5:671–682; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Peterson, W. D., Jr.; Simpson, W. F.; Hukku, B. Cell culture characterization: monitoring for cell identification. In: Jakoby, W. B.; Pastan, I. H., eds. Methods in Enzymology 58:164–178; 1979.

  25. Roberts, A. B.; Anzano, M. A.; Wakefield, L. M., et al. Type β transforming growth factor: A bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. USA 82:119–123; 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Saffiotti, U.; Bignami, M.; Kaighn, M. E. Parameters affecting the relationships among cytotoxic, genotoxic, mutational and transformational responses in BALB/3T3 cells. In: Barrett, J. C.; Tannant, R. W.; eds. Mammalian Cell Transformation. Mechanisms of Carcinogenesis and Assays for Carcinogens. New York: Raven Press; 1985:139–151.

    Google Scholar 

  27. Scotto, J.; Fraumeni, J. F., Jr. Skin (other than melanoma). In: Schottenfeld, D.; Fraumeni J. F., Jr., eds. Cancer Epidemiology and Prevention. Philadelphia: W. B. Saunders Co.; 1982:996–1011.

    Google Scholar 

  28. Seabright, M. A rapid banding technique for human chromosomes. Lancet ii:971–972; 1971.

    Article  Google Scholar 

  29. Shubik, P.; Baserga, R.; Ritchie, A. C. The life and progression of induced skin tumours in mice. Br. J. Cancer 7:342–351; 1953.

    PubMed  CAS  Google Scholar 

  30. Sutherland, G. R. The fragile X chromosome. Intern. Rev. Cytol. 81:107–143; 1983.

    Article  CAS  Google Scholar 

  31. Takehara, K.; LeRoy, E. C.; Grotendorst, G. R. TGFβ Inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415–422; 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Thomassen, D. G.; Saffiotti, U.; Kaighn, M. E. Clonal proliferation of rat tracheal epithelial cells in serum-free medium and their responses to hormones, growth factors and carcinogens. Carcinogenesis 7:2033–2039; 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Weissman, B.; Aaronson, S. A. BALB and Kirsten murine sarcoma viruses alter growth and differentiation of EGF-dependent BALB/c mouse epidermal keratinocyte lines. Cell 32:599–606; 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Wille, J. J.; Pittelkow, M. R.; Shipley, G. D., et al. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J. Cell. Physiol. 121:31–44; 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Yuspa, S. H. Cutaneous chemical carcinogenesis. J. Amer. Acad. Dermatol. 15:1031–1044; 1986.

    Article  CAS  Google Scholar 

  36. Yuspa, S. H.; Harris, C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp. Cell Res. 86:95–105; 1974.

    Article  PubMed  CAS  Google Scholar 

  37. Yuspa, S. H.; Koehler, B.; Kulesz-Martin, M., et al. Clonal growth of mouse epidermal cells in medium with reduced calcium concentration. J. Invest. Dermatol. 76:144–146; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaighn, M.E., Camalier, R.F., Bertolero, F. et al. Spontaneous establishment and characterization of mouse keratinocyte cell lines in serum-free medium. In Vitro Cell Dev Biol 24, 845–854 (1988). https://doi.org/10.1007/BF02623657

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623657

Key words

Navigation