Skip to main content
Log in

Cereal protoplast recalcitrance

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Cereal leaf protoplasts are extremely difficult to culture (recalcitrant) in vitro. There have been few reports of division and the protoplasts typically exhibit excessive enlargement and vacuolization with reduced cell wall deposition. Inasmuch as leaf base explants are capable of callus formation in vitro, protoplasts derived from this tissue must have lost the ability to divide as a consequence of changes induced by the wall-digestion process. We review evidence suggesting that the inhibition of mitosis in these protoplasts is a consequence of a cascade of events initiated at the plasma membrane. The enzyme treatment necessary for wall removal triggers membrane depolarization and other changes that can lead to the initiation of lipid peroxidation and oxidative stress. Mitotically inactive cereal leaf protoplasts are unable to mount a protective response to these degradative processes. Consequently, the resulting membrane perturbations and permeabilization give rise to secondary effects on the cytoskeleton and the cell wall. These effects include reduced or absent microtubules as well as reduced and uneven wall deposition. Such abnormalities are observed in cereal leaf protoplasts and are sufficient to account for recalcitrance because the occurrence of mitosis is strongly dependent on a normal cell wall and cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akashi, T.; Kawasaki, S.; Shibaoka, H. Stabilization of cortical microtubules by the cell wall in cultured tobacco cells: effects of extensin on the cold-stability of cortical microtubules. Planta 182:363–369; 1990.

    Article  Google Scholar 

  2. Altman, A.; Kaur-Sawhney, R.; Galston, A. Stabilization of oat leaf protoplasts through polyamine-mediated inhibition of senescence. Plant Physiol. 60:570–574; 1977.

    PubMed  CAS  Google Scholar 

  3. Bacic, A.; Delmer, D. P. Stimulation of membrane-associated polysaccharide synthetases by a membrane potential in developing cotton fibers. Planta 152:346–351; 1981.

    Article  CAS  Google Scholar 

  4. Barber, M. S.; Bertram, R. E.; Ride, J. P. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol.. 34:3–12; 1989.

    Article  CAS  Google Scholar 

  5. Bhojwani, S. S.; Razdan, M. K. Plant tissue culture: theory and practice. Amsterdam: Elsevier; 1983.

    Google Scholar 

  6. Blowers, D. P.; Boss, W. F.; Trewavas, A. J. Rapid changes in plasma membrane protein phosphorylation during initiation of cell wall digestion. Plant Physiol. 86:505–509; 1988.

    PubMed  CAS  Google Scholar 

  7. Bolwell, G. P. Synthesis of cell wall components: aspects of control. Phytochemistry 27:1235–1253; 1988.

    Article  CAS  Google Scholar 

  8. Chen, Q.; Boss, W. F. Short-term treatment with cell wall degrading enzymes increases the activity of the inositol phospholipid kinases and the vanadate-sensitive ATPase of carrot cells. Plant Physiol. 94:1820–1829; 1990.

    PubMed  CAS  Google Scholar 

  9. Chen, W. H.; Davey, M. R.; Power, J. B., et al. Sugarcane protoplasts: factors affecting division and plant regeneration. Plant Cell Rep. 7:344–347; 1988.

    Article  CAS  Google Scholar 

  10. Cocking, E. C. Plant cell protoplasts-isolation and development. Annu. Rev. Plant Physiol. 23:29–50; 1972.

    Article  CAS  Google Scholar 

  11. Cosgrove, D. J. Wall relaxation and the driving forces for cell expansive growth. Plant Physiol 84:561–564; 1987.

    PubMed  CAS  Google Scholar 

  12. Creemers-Molenaar, J.: VanOort, Y. Antioxidants influence the plating efficiency and microcallus growth of protoplasts inLolium Perenne L. In: Proceedings of the VII international congress of plant tissue culture. Dordrecht, Boston, London: Kluwer Academic Publishers; 1990:44–49.

    Google Scholar 

  13. Croft, K. P. C.; Voisey, C. R.; Slusarenko, A. J. Mechanism of hypersensitive cell collapse: correlation of increases lipoxygenase activity with membrane damage in leaves ofPhaseolus vulgaris (L.) inoculated with an avirulent race ofPseudomonas syringae pv.phaseolica. Physiol. Mol. Plant Pathol. 36:49–62; 1990.

    Article  CAS  Google Scholar 

  14. Cutler, A. J.; Saleem, M.; Coffey, M. A., et al. Role of oxidative stress in cereal protoplast recalcitrance. Plant Cell Tissue Organ Cult. 18:113–127; 1989.

    Article  CAS  Google Scholar 

  15. Dale, P. J. Protoplast culture and plant regeneration of cereals and other recalcitrant crops. Exper. Supp. (Basel) 46:31–41; 1983.

    Google Scholar 

  16. Dalton, D. A.; Sterling, S. A.; Hanus, F. J., et al. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci. USA 83:3811–3815; 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Deka, P. C.; Sen, S. K. Differentiation in calli originated from isolated protoplasts of rice (Oryza sativa L.) through plating technique. Mol. Gen. Genet. 145:239–243; 1976.

    Article  Google Scholar 

  18. Drolet, G.; Dumbroff, E. B.; Legge, R. L., et al. Radical scavenging properties of polyamines. Phytochemistry 25:367–371; 1986.

    Article  CAS  Google Scholar 

  19. Dugas, C. M.; Quanning, L.; Khan, I. A., et al. Lateral diffusion in the plasma membrane of maize protoplasts with implications for cell culture. Planta 170:387–396; 1989.

    Article  Google Scholar 

  20. Emmerling, M.; Seitz, H. U. Influence of a specific xyloglucan-nonasaccharide derived from cell walls of suspension-cultured cells ofDaucus carota L. on regenerating carrot protoplasts. Planta 182:174–180; 1990.

    Article  CAS  Google Scholar 

  21. Evans, D. A.; Crocomo, O. J.; deCavalco, M. T. V. Protoplast isolation and subsequent callus regeneration in sugarcane. Z. Pflanzenphysiol. 98:355–358; 1980.

    Google Scholar 

  22. Fowke, L. C.; Gamborg, O. L. Applications of protoplasts to the study of plant cells. Int. Rev. Cytol. 68:9–47; 1980.

    Article  CAS  Google Scholar 

  23. Fry, S. C. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol. Plant. 75:532–536; 1989.

    Article  CAS  Google Scholar 

  24. Fry, S. C.; Miller, J. G. Toward a working model of the growing plant cell wall: phenolic cross-linking reactions in the primary cell walls of dicotyledons. In: Lewis, N. G.; Paice, M. G. eds. Plant cell wall polymers. Washington DC: American Chemical Society; 1989:33–46.

    Google Scholar 

  25. Galbraith, D. W.; Mauch, T. J.; Shields, B. A. Analysis of the initial stages of plant protoplast development using Hoechst 33258: reactivation of the cell cycle. Physiol. Plant. 51:380–386; 1981.

    Article  CAS  Google Scholar 

  26. Gaspar, T.; Penel, C.; Castillo, F. J. A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant. 64:418–423; 1985.

    Article  CAS  Google Scholar 

  27. Giddings, T. H.; Staehelin, L. A. Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils inClosterium sp. Planta 173:22–30; 1988.

    Article  Google Scholar 

  28. Goldberg, R.; Liberman, M.; Mathieu, C., et al. Development of epidermal cell wall peroxidases along the mung bean hypocotyl: possible involvement in the cell wall stiffening process. J. Exp. Bot. 38:1378–1390; 1987.

    Article  CAS  Google Scholar 

  29. Grosset, J.; Marty, I.; Chartier, Y., et al. mRNAs newly synthesized by tobacco mesophyll protoplasts are wound-inducible. Plant Mol. Biol. 15:485–496; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Grosset, J.; Meyer, Y.; Chartier, Y., et al. Tobacco mesophyll protoplasts synthesize 1,3-β-glucanase, chitinase, and “osmotins” during in vitro culture. Plant Physiol. 92:520–527; 1990.

    PubMed  CAS  Google Scholar 

  31. Gunning, B. E. S.; Hardham, A. R. Microtubules. Ann. Rev. Plant Physiol. 33:651–698; 1982.

    Article  CAS  Google Scholar 

  32. Hahne, B.; Fleck, J.; Hahne, G. Colony formation from mesophyll protoplasts of a cereal, oat. Proc. Natl. Acad. Sci. USA 86:6157–6160; 1989.

    Article  PubMed  Google Scholar 

  33. Hahne, B.; Hoffman, F. Cytogenetics of protoplasts cultures ofBrachycome dichromosomatica andCrepis capillaris and regeneration of plants. Theor. Appl. Genet. 72:244–251; 1986.

    Article  Google Scholar 

  34. Hahne, B.; Lorz, H.; Hahne, G. Oat mesophyll protoplasts: their response to various feeder layers. Plant Cell Rep. 8:590–593; 1990.

    Article  Google Scholar 

  35. Hahne, G.; Hoffmann, F. Cortical microtubular lattices: absent from mature mesophyll and necessary for cell division? Planta 166:309–313; 1985.

    Article  Google Scholar 

  36. Hahne, G.; Hoffmann, F. Dimethyl sulfoxide can initiate cell divisions of arrested callus protoplasts by promoting cortical microtubule assembly. Proc. Natl. Acad. Sci. USA 81:5449–5453; 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Hahne, G.; Lorz, H. Release of phytotoxic factors from plant cell walls during protoplast isolation. J. Plant Physiol. 132:345–350; 1988.

    CAS  Google Scholar 

  38. Hargreaves, A. J.; Wandosell, F.; Avila, J., et al. Phosphorylation of tubulin enhances its interaction with membranes. Nature 323:827–828; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Hensel, A.; Franz, G. A. (1–3, 4)-linkedβ-d-glucan from the cell walls of regenerating tobacco protoplasts. Carbohydr. Res. 184:285–287; 1988.

    Article  CAS  Google Scholar 

  40. Imbrie-Milligan, C. W.; Kamo, K. K.; Hodges, T. K. Microcallus growth from maize protoplasts. Planta 171:58–64; 1987.

    Article  CAS  Google Scholar 

  41. Ishii, S. Enzymes for the isolation of protoplasts. In: Bajaj, Y. P. S., ed. Plant protoplasts and genetic engineering, vol I. Berlin: Springer-Verlag; 1989:23–33.

    Google Scholar 

  42. Ishii, S. Factors influencing protoplast viability of suspension-cultured rice cells during isolation process. Plant Physiol. 88:26–29; 1988.

    PubMed  CAS  Google Scholar 

  43. Ishii, S. Generation of active oxygen species during enzymic isolation of protoplasts from oat leaves. In Vitro Cell. Dev. Biol. 23:653–658; 1987.

    Article  CAS  Google Scholar 

  44. Ishii, S. Involvement of singlet oxygen in damage of protoplasts isolated from suspension-cultured rice cells. Plant Physiol. 93:145S; 1990.

  45. Ishii, S.; Mogi, Y. Identification of enzymes that are effective for isolating protoplasts from grass leaves. Plant Physiol. 72:641–644; 1983.

    PubMed  CAS  Google Scholar 

  46. Ivantsov, A. I.; Akhmetov, R. R. Cultivation of isolated corn protoplasts. Fiziol. Rast. (English Trans.) 25:1136–1138; 1978.

    CAS  Google Scholar 

  47. Kagan, V. E. Lipid peroxidation in membranes. Boca Raton, FL: CRC Press; 1988.

    Google Scholar 

  48. Karunaratne, S. M.; Scott, K. J. Mitotic activity in protoplasts isolated fromSorghum bicolor leaves. Plant Sci. Lett. 23:11–16; 1981.

    Article  Google Scholar 

  49. Kaur-Sawhney, R.; Flores, H.; Galston, A. W. Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol. 65:368–371; 1980.

    Article  PubMed  CAS  Google Scholar 

  50. Kauss, H.; Jeblick, W.; Domard, A. The degress of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts ofCatharanthus roseus. Planta 178:385–392; 1989.

    Article  CAS  Google Scholar 

  51. Kendall, E. J.; McKersie, B. D. Free radical and freezing injury to cell membranes of winter wheat. Physiol. Plant. 76:86–94; 1989.

    Article  CAS  Google Scholar 

  52. Kinnersley, A. M.; Racusen, R. H.; Galston, A. W. A comparison of regenerated cell walls in tobacco and cereal protoplasts. Planta 139:155–158; 1978.

    Article  Google Scholar 

  53. Krens, F. A.; Jamar, D.; Rouwendal, G. J. A., et al. Transfer of cytoplasm from newBeta CMS sources to sugar beet by asymmetric fusion. Theor. Appl. Genet 79:390–396; 1990.

    Article  Google Scholar 

  54. Labrador, E.; Nevins, D. J. An exo-β-d-glucanase derived fromZea coleoptile walls with a capacity to elicit elongation. Physiol. Plant. 77:479–486; 1989.

    Article  CAS  Google Scholar 

  55. Lagrimini, L. M.; Rothstein, S. Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol. 84:438–442; 1987.

    PubMed  CAS  Google Scholar 

  56. Lee, N.; Wetzstein, H. Y.; Bornman, C. H. Cortical microtubule organization inVitis protoplasts as affected by concentration of enzyme isolation medium and duration of incubation. Physiol. Plant. 77:27–32; 1989.

    Article  CAS  Google Scholar 

  57. Legge, R. L.; Brown, R. M. Modification of protoplast cell wall regeneration by membrane perturbation. Protoplasma 143:38–42; 1988.

    Article  Google Scholar 

  58. Legge, R. L.; Thompson, J. E.; Baker, J. E., et al. The effect of calcium on the fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious apples. Plant Cell Physiol. 23:161–169; 1982.

    CAS  Google Scholar 

  59. Ludevid, M. D.; Ruiz-Avila, L.; Valles, M. P., et al. Expression of genes for cell-wall proteins in dividing and wounded tissues ofZea mays L. Planta 180:524–529; 1990.

    Article  CAS  Google Scholar 

  60. Marchant, H. J.; Hines, E. R. The role of microtubules and cell-wall deposition in elongation of regenerating protoplasts ofMougeotia. Planta 146:41–48; 1979.

    Article  Google Scholar 

  61. McIntosh, J. R. Mechanisms of mitosis. Trends Biochem. Sci. 9:195–198; 1984.

    Article  Google Scholar 

  62. McKersie, B. D.; Senaratna, T.; Walker, M. A., et al. Deterioration of membranes during aging in plants: evidence for free radical mediation. In: Nooden, L. D.; Leopold A. C., eds. Senescence and aging in plants. San Diego, New York, London: Academic Press; 1988:441–464.

    Google Scholar 

  63. Meijer, E. G. M.; Simmonds, D. H. Interphase microtubule arrays in cultured mesophyll protoplasts of higher plants. Physiol. Plant. 72:511–517; 1988.

    CAS  Google Scholar 

  64. Melan, M. A. Taxol maintains organized microtubule patterns in protoplasts which lead to the resynthesis of organized cell wall microfibrils. Protoplasma 153:169–177; 1990.

    Article  Google Scholar 

  65. Meyer, Y.; Abel, W. O. Budding and cleavage division of tobacco mesophyll protoplasts in relation to pseudo-wall and wall formation. Planta 125:1–13; 1975.

    Article  CAS  Google Scholar 

  66. Meyer, Y.; Herth, W. Chemical inhibition of cell wall formation and cytokinesis but not of nuclear division in protoplasts ofNicotiana tabacum cultivated in vitro. Planta 142:253–262; 1978.

    Article  CAS  Google Scholar 

  67. Morris, P.; Linstead, P.; Thain, J. F. Comparative studies of leaf tissue and isolated protoplasts. J. Exp. Bot. 32:801–811; 1981.

    Article  CAS  Google Scholar 

  68. Motoyoshi, F. Protoplasts isolated from callus cells of maize endosperm. Exp. Cell Res. 68:452–456; 1971.

    Article  PubMed  CAS  Google Scholar 

  69. Mussell, H.; Earle, E.; Campbell, L., et al. Ethylene synthesis during protoplast formation from leaves ofAvena sativa. Plant Sci. 47:207–214; 1986.

    Article  CAS  Google Scholar 

  70. Potrykus, I. Gene transfer to cereals: an assessment. Trends Biotech. 7:269–273; 1989.

    Article  Google Scholar 

  71. Potrykus, I.; Harms, C. T.; Lorz, H., et al. Callus formation from stem protoplasts of corn (Zea mays L.). Mol. Gen. Genet. 156:347–350; 1977.

    Article  CAS  Google Scholar 

  72. Premecz, G.; Ruzicska, T.; Olah, T., et al. Effect of “osmotic stress” on protein and nucleic acid synthesis in isolated tobacco protoplasts. Planta 141:33–36; 1978.

    Article  CAS  Google Scholar 

  73. Rebmann, G.; Hertig, C.; Bull, J., et al. Cloning and sequencing of cDNAs encoding a pathogen-induced putative peroxidase of wheat (Triticum aestivum L.). Plant Mol. Biol. 16:329–331; 1991.

    Article  PubMed  CAS  Google Scholar 

  74. Rickauer, M.; Fournier, J.; Pouenat, M-L., et al. Early changes in ethylene synthesis during defense induction in tobacco cells. Plant Physiol. Biochem. 28:647–653; 1990.

    CAS  Google Scholar 

  75. Roberts, E.; Kutchan, T.; Kolattukudy, P. E. Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Mol. Biol. 11:15–26; 1988.

    Article  CAS  Google Scholar 

  76. Saleem, M.; Cutler, A. J. Stabilizing corn leaf protoplasts with n-propyl gallate. J. Plant Physiol. 128:479–484; 1987.

    CAS  Google Scholar 

  77. Saleem, M.; Cutler, A. J.; Coffey, M., et al. Role of peroxidase in protoplast development: the activity and molecular forms of peroxidase in miotgenic and non-mitogenic protoplasts. In: Puite, K. J.; Dons, J. J. M.; Huizing H. J., et al., eds. Progress plant protoplast research. Dordrecht, Boston, London: Kluwer Academic Publishers; 1988:137–138.

    Google Scholar 

  78. Saleem, M.; Cutler, M.; Coffey, M., et al. Effects of DNA methylation inhibitor on cultured corn leaf protoplasts. Plant Physiol. 89:191S; 1989.

  79. Saravitz, D. M.; Siedow, J. N. Lipoxygenase expression after wounding in leaves of soybean. Plant Physiol. 93:99S; 1990.

  80. Sarhan, F.; Cesar, D. High yield isolation of mesophyll protoplasts from wheat, barley and rye. Physiol. Plant. 72:337–342; 1988.

    Article  CAS  Google Scholar 

  81. Schilde-Rentschler, L. Role of the cell wall in the ability of tobacco protoplasts to form callus. Planta 135:177–181; 1977.

    Article  CAS  Google Scholar 

  82. Schmidt, A.; Kunert, K. J. Lipid peroxidation in higher plants: the role of glutathione reductase. Plant Physiol. 82:700–702; 1986.

    PubMed  CAS  Google Scholar 

  83. Sies, H. Oxidative stress: introductory remarks. In: Sies, H., ed. Oxidative stress. London: Academic Press; 1985:1–8.

    Google Scholar 

  84. Simmonds, D. H.; Setterfield, G. Aberrant microtubule organization can result in genetic abnormalities in protoplast cultures ofVicia hajastana Grossh. Planta 167:460–468; 1986.

    Article  Google Scholar 

  85. Slocum, R. D.; Kaur-Sawhney, R. K.; Galston, A. W. The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys. 235:283–303; 1984.

    Article  PubMed  CAS  Google Scholar 

  86. Stadler, J.; Phillips, R.; Leonard, M. Mitotic blocking agents for suspension cultures of maize “Black Mexican Sweet” cell lines. Genome 32:475–478; 1989.

    CAS  Google Scholar 

  87. Stern, A. Red cell oxidative damage. In: Sies, H. ed. Oxidative stress. London: Academic Press; 1985:331–349.

    Google Scholar 

  88. Svalheim, O.; Robertson, B. Induction of peroxidases in cucumber hypocotyls by wounding and fungal infection. Physiol. Plant. 78:261–267; 1990.

    Article  CAS  Google Scholar 

  89. Taylor, A. R. D.; Hall, J. L. Some physiological properties of protoplasts isolated from maize and tobacco tissues. J. Exp. Bot. 97:383–391; 1976.

    Article  Google Scholar 

  90. Thompson, J. E.; Legge, R. L.; Barber, R. F. The role of free radicals in senescence and wounding. New Phytol. 105:317–344; 1987.

    Article  CAS  Google Scholar 

  91. Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W. Polyamine metabolism and osmotic stress II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol. 82:375–378; 1986.

    PubMed  CAS  Google Scholar 

  92. Van Der Valk, H. C. P. M. Determination of proteases in isolated washed protoplasts: inactivation of proteases in cell wall-degrading enzyme mixtures used in protoplast isolation. Plant Sci. Lett. 36:201–204; 1984.

    Article  Google Scholar 

  93. Vasil, I. K. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–218; 1987.

    Google Scholar 

  94. Vasil, I. K. Progress in the regeneration and genetic manipulation of cereal crops. Biotechnology 6:397–402; 1988.

    Article  Google Scholar 

  95. Walton, J. D.; Earle, E. D. Stimulation of extracellular polysaccharide synthesis in oat protoplasts by the host-specific phytotoxin victorin. Planta 165:407–415; 1985.

    Article  CAS  Google Scholar 

  96. Wang, H.; Cutler, A. J.; Saleem, M., et al. Microtubules in maize protoplasts derived from cell suspension cultures: effect of calcium and magnesium ions. Eur. J. Cell Biol. 49:80–86; 1989.

    CAS  Google Scholar 

  97. Wang, H.; Cutler, A. J.; Saleem, M., et al. DNA replication in maize leaf protoplasts. Plant Cell Tissue Organ Cult. 18:33–46; 1989.

    Article  Google Scholar 

  98. Wang, H.; Cutler, A. J.; Saleem, M., et al. Treatment of soybean cells with cell wall degrading enzymes inhibits nuclear division but not DNA synthesis. J. Plant Physiol. 135:404–408; 1989.

    CAS  Google Scholar 

  99. Wang, H.; Cutler, A. J.; Saleem, M., et al. Microtubules in maize leaf protoplasts in relation to donor tissue and in vitro culture. Protoplasma 150:48–53; 1989.

    Article  Google Scholar 

  100. Wang, H.; Slater, G. P.; Fowke, L., et al. Comparison of cell wall regeneration on maize protoplasts isolated from leaf tissue and suspension cultured cells. In Vitro Cell. Dev. Biol. 27P:70–76; 1991.

    Google Scholar 

  101. Zelcer, A.; Galun, E. Culture of newly isolated protoplasts: cell division and precursor incorporation following a transient exposure to coumarin. Plant Sci. Lett. 18:185–190; 1980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is NRCC number 32475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutler, A.J., Saleem, M. & Wang, H. Cereal protoplast recalcitrance. In Vitro Cell Dev Biol - Plant 27, 104–111 (1991). https://doi.org/10.1007/BF02632192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632192

Key words

Navigation