Skip to main content
Log in

Evidence for secretion of high molecular weight mucins by canine tracheal epithelial cells in primary culture: Effects of select secretagogues on mucin secretion

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The purpose of this investigation was to provide evidence for the secretion of high molecular weight mucins, CTM-A and CTM-B, in primary culture of canine tracheal epithelial (CTE) cells. The cells were isolated from tracheas of mongrel dogs by pronase treatment. Primary cultures of the epithelial cells were established using ICN cellagen inserts in Dulbecco’s modified Eagle’s/F12 medium supplemented with growth factors and could be maintained for up to 23 days. The evidence for the mucin secretion in culture medium and their localization in the cells was established by a) positive immunocytochemical staining using specific antibodies developed against purified native as well as deglycosylated CTM-A and CTM-B; b) incorporation of labeled amino acids, followed by electrophoresis and autoradiography detection of glycoconjugates purified from the culture medium; c) comparison of the amino acid compositions of mucin purified from canine tracheal pouch secretions and that purified from the culture medium; and d) Western blot analyses using specific polyclonal antibodies directed against deglycosylated CTM-A and CTM-B. Immunoaffinity purified secreted labeled glycoconjugates were resistant to hyaluronidase treatment. The effects of cyclic AMP (1 × 10−5 M), dibutyryl cyclic AMP (1 × 10−5 M), 8-bromocyclic AMP (1 × 10−5 M), and prostaglandin E1 (1 × 10−6 M) on mucin secretion by CTE cells were also investigated. Secretion of mucins by CTE cells in culture was considerably more enhanced by 8-bromocyclic AMP than that observed for other secretagogues used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, K. B.; Schwarz, J. E.; Anderson, W. H., et al. Platelet activating factor stimulates secretions of mucin by explants of rodent airways in organ culture. Exp. Lung. Res. 13:25–43; 1987.

    PubMed  CAS  Google Scholar 

  • Alder, K. B.; Cheng, P-W.; Kim, K. C. Characterization of guinea pig tracheal epithelial cells maintained in biphasic organotypic culture: cellular composition and biochemical analysis of released glycoconjugates. Am. J. Respir. Cell Mol. Biol. 2:145–154; 1990.

    Google Scholar 

  • Barnes, D.; Sato, G. H. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102:255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum, C. B.; Finkbeiner, W. E. Airway secretion: a cell specific analysis. Horm. Metab. Res. 20:661–667; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bitter, T.; Muir, H. A modified uronic acid carbazole reaction. Anal. Biolchem. 4:330–334; 1962.

    Article  CAS  Google Scholar 

  • Chace, K. V.; Flux, M.; Sachdev, G. P. Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients. Biochemistry 24:7334–7341; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Chopra, D. P.; Sullivan, J.; Wille, J. J., et al. Propagation of differentiating normal human tracheobronchial epithelial cells in serum-free medium. J. Cell. Physiol. 130:173–181; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, J. Immunochemical techniques for the identification and estimation of macromolecules. In: Work, T. S.; Work, E., eds. Laboratory techniques in biochemistry and molecular biology, vol. I, part 3. Amsterdam, The Netherlands: Elsevier; 1981:233.

    Google Scholar 

  • Coleman, D. L.; Tuet, I. K.; Widdicombe, J. H. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol. 246:C355–359; 1984.

    PubMed  CAS  Google Scholar 

  • DeBuysscher, E.; Kennedy, J.; Mendicino, J. Synthesis of mucin glycoprotein by epithelial cells isolated from swine trachea by specific proteolysis. In Vitro 20:433–446; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Edge, A. S. B.; Faltynek, C. R.; Hot, L., et al. Deglycosylation of glycoprotein by trifluoromethane sulfonic acid. Anal. Biochem. 118:131–137; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Engvall, E. Enzyme immunoassay, ELISA and EMIT. In: Vunakis, H. V.; Langone, J. J., eds. Methods in enzymology, vol. 70. New York: Academic Press; 1980:419–438.

    Google Scholar 

  • Gruenert, D. C.; Basbaum, C. B.; Widdicombe, J. H. Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell. Dev. Biol. 26:411–418; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, R.; Niday, E.; Gordon, J. A dot-immunoblotting assay for monoclonal and other antibodies. Anal. Biochem. 119:142–147; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, R.; Roussel, P. Bronchial mucus: physical and biochemical features. In: Weiss, E. B.; Segal, M. S., eds. Bronchial asthma: mechanism and therapeutics. Boston: Little, Brown and Co.; 1976:409–422.

    Google Scholar 

  • Holden, K. G.; Yim, N. C. F.; Griggs, L. J., et al. Gel electrophoresis of mucous glycoproteins. I. Effect of gel porosity. Biochemistry 10:3105–3109; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. C. Possible requirement of collagen gel substratum for the production of mucinlike glycoproteins by primary rabbit tracheal epithelial cells in culture. In Vitro Cell. Dev. Biol. 21:617–627; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. C.; Nassiri, J.; Brody, J. S. Mechanisms of airway goblet cell mucin release: studies with cultured tracheal surface epithelial cells. Am. J. Respir. Cell Mol. Biol. 1:137–143; 1989.

    PubMed  CAS  Google Scholar 

  • Kim, K. C. Mucin-like glycoproteins secreted from cultured hamster tracheal surface eptihelial cells: their hydrophobic nature and amino acid composition. Exp. Lung Res. 17:65–76; 1991.

    PubMed  CAS  Google Scholar 

  • Lazarus, S. C.; Bausbaum, C. B.; Gold, W. M. Prostaglandin and intracellular cyclic AMP in respiratory secretory cells. Am. Rev. Respir. Dis. 130:262–266; 1984.

    PubMed  CAS  Google Scholar 

  • Lee, T. C.; Wu, R.; Brody, A. R., et al. Growth and differentiation of hamster tracheal epithelial cells in culture. Exp. Lung Res. 6:27–45; 1983.

    Google Scholar 

  • Leigh, M. W.; Cheng, P. W.; Carson, J. L., et al. Developmental changes in glycoconjugate secretion by ferret tracheas. Am. Rev. Respir. Dis. 134:784–790; 1986.

    PubMed  CAS  Google Scholar 

  • Leigh, M. W.; Cheng, P. W.; Boat, T. F. Developmental changes of ferret tracheal mucin composition and biosynthesis. Biochemistry 28:9440–9446; 1989.

    Article  PubMed  CAS  Google Scholar 

  • McCool, D. J.; Marcon, M. A.; Forstner, J. F., et al. The T84 human colonic adenocarcinoma cell line procedures mucin in culture and releases it in response to various secretogogues. Biochem. J. 267:491–500; 1990.

    PubMed  CAS  Google Scholar 

  • Plopper, C. G.; Mariassy, A. T.; Lollini, L. O. Structure as revealed by airway dissection. A comparison of mammalian lungs. Am. Rev. Respir. Dis. 128:54–57; 1983.

    Google Scholar 

  • Rearick, J. I.; Deas, M.; Jetten, A. M. Synthesis of mucous glycoproteins by rabbit tracheal cells in vitro. Modulation by substratum, retinoids and cyclic AMP. Biochem, J. 242:19–25; 1987.

    CAS  Google Scholar 

  • Reid, L.; Clamp, J. R. The biochemical and histochemical nomenclature of mucus. Br. Med. Bull. 34:5–8; 1978.

    PubMed  CAS  Google Scholar 

  • Roussel, P.; Lamblin, G.; Lhermitte, M., et al. The complexity of mucins. Biochemie 70:1471–1482; 1988.

    Article  CAS  Google Scholar 

  • Sachdev, G. P.; Fox, O. F.; Wen, G., et al. Isolation and characterization of glycoproteins from canine tracheal mucus. Biochim. Biophys. Acta 536:184–196; 1978.

    PubMed  CAS  Google Scholar 

  • Shankar, V.; Naziruddin, B.; Reyes de la Rocha, S., et al. Evidence of hydrophobic domains in human respiratory mucins: effect of sodium chloride on hydrophobic binding properties. Biochemistry 29:5856–5864; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Shankar, V.; Virmani, A. K.; Naziruddin, B., et al. Macromolecular properties and polymeric structure of canine tracheobronchial mucins. Biochem. J. 276:525–532; 1991.

    PubMed  CAS  Google Scholar 

  • Spackman, D. H. Methods in enzymology, vol. 11. New York: Academic Press; 1967:3–15.

    Google Scholar 

  • Terzaghi, M.; Nettesheim, P. Dynamics of neoplastic development in carcinogen-exposed tracheal mucosa. Cancer Res. 39:4003–4010; 1979.

    PubMed  CAS  Google Scholar 

  • Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Van Scott, M. R.; Yankaskas, J. R.; Boucher, R. C. Culture of airway epithelial cells. Research techniques. Exp. Lung Res. 11:75–94; 1986.

    PubMed  Google Scholar 

  • Van Scott, M. R.; Lee, N. P.; Yankaskas, J. R., et al. Effect of hormones on growth and function of cultured canine tracheal epithelial cells. Am. J. Physiol. 255:237–245; 1988.

    Google Scholar 

  • Virmani, A. K.; Shankar, V.; Gilmore, M. S., et al. Translation of messenger RNA from canine tracheal epithelial cells: identification of mucin core protein. Am. J. Respir. Cell Mol. Biol. 5:149–154; 1991.

    PubMed  CAS  Google Scholar 

  • Wardell, J. L., Jr.; Chakrin, L. W.; Payne, B. J. The canine tracheal pouch. A model for use in respiratory mucus research. Am. Rev. Respir. Dis. 101:741–754; 1970.

    PubMed  Google Scholar 

  • Widdicombe, J. H. Culture of tracheal epithelial cells. In: Broga, P. C.; Allegra, L., eds. In vitro methods. Methods in bronchial mucology. New York, N.Y.: Raven Press Ltd; 1988:291–302.

    Google Scholar 

  • Woodward, H. D.; Ringler, N. J.; Selvakumar, R., et al. Deglycosylation studies on tracheal mucin glycoprotein. Biochemistry 26:5315–5322; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R.; Smith, D. Continuous multiplication of rabbit tracheal epithelial cells in a defined hormone-supplemented medium. In Vitro 18:800–811; 1982.

    PubMed  CAS  Google Scholar 

  • Wu, R.; Nolan, E.; Turner, C.. Expression of tracheal differentiatiated function in serum free hormone-supplemented medium. J. Cell. Physiol. 125:167–168; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R.; Wu, M. M. J. Effects of retinoids on human bronchial epithelial cells. Differential regulation of hyaluronate synthesis and keratin protein synthesis. J. Cell. Physiol. 127:73–82; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R.; Sato, G. H.; Whitcutt, M. J. Developing differentiated epithelial cell cultures: airway epithelial cells. Fundam. Appl. Toxicol. 6:580–590; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R.; Martin, W. R.; Robinson, C. B., et al. Expression of mucin synthesis and secretion in human tracheobronchial epithelial cells grown in culture. Am. J. Respir. Cell Mol. Biol. 3:467–478; 1990.

    PubMed  CAS  Google Scholar 

  • Yankaskas, J. R.; Cotton, C. U.; Knowles, M. R., et al. Culture of human nasal epithelial cells on collagen matrix supports. A comparison of bioelectric properties of normal and cystic fibrosis epithelia. Am. Rev. Respir. Dis. 132:1281–1287; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virmani, A.K., Naziruddin, B., Desai, V.C. et al. Evidence for secretion of high molecular weight mucins by canine tracheal epithelial cells in primary culture: Effects of select secretagogues on mucin secretion. In Vitro Cell Dev Biol - Animal 28, 120–127 (1992). https://doi.org/10.1007/BF02631015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631015

Key words

Navigation