Skip to main content
Log in

Thein ovulo environment and its relevance to cloning wheat via somatic embryogenesis

  • Plant Cellular and Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Induction of somatic embryogenesis refers to processes that initiate embryo-forming cellular activity. Competence of somatic tissues for embryo formation is measured by the number of somatic embryos produced following induction. Recent findings indicate that competence of wheat explants can be enhanced by treatments that alter hormone levels during differentiation of explantsin vivo. Wheat spikes have been detached at anthesis and cultured with culms in detached-spike-culture medium. The addition of abscisic acid, indole-3-acetic acid or zeatin to the medium depresses embryogenic competence of immature-embryo explants (excised and cultured 11–13 days after anthesis) while deleting hormones from the medium enhances competence. Differentiation of somatic embryos is improved by exposing embryogenic cultures to conditions that simulate nutritional, hormonal and gas-phase conditions of ovules. In particular the lowering of oxygen availability to callus cultures promotes growth of embryogenic callus and suppresses growth of nonembryogenic callus. Finally procedures that simulate seed desiccation significantly increase germination percentages of somatic embryos of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwell, B. J.; Greenway, H. The relationship between growth and oxygen uptake in hypoxic rice seedlings. J. Exp. Bot. 38:454–465; 1987.

    Article  Google Scholar 

  2. Bangerth, F.; Aufhammer, W.; Baum, O. IAA level and dry matter accumulation at different positions within a wheat ear. Physiol. Plant. 63: 121–125; 1985.

    Article  CAS  Google Scholar 

  3. Brinegar, A. C.; Stevens, A.; Fox, J. Biosynthesis and degradation of a wheat embryo cytokinin-binding protein during embryogenesis and germination. Plant Physiol. 79:706–710; 1985.

    PubMed  CAS  Google Scholar 

  4. Butt, V. S. Direct oxidase and related enzymes. In: Davies, D. D., ed. The biochemistry of plants, vol. 2; metabolism and respiration. New York: Academic Press; 1980:81–123.

    Google Scholar 

  5. Carman, J. G. Improved somatic embryogenesis in wheat by artial simulation of the in-ovulo oxygen, growth-regulator and desiccation environments. Planta 175:417–424; 1988.

    Article  CAS  Google Scholar 

  6. Carman, J. G.; Campbell, W. F. Factors affecting somatic embryogenesis in wheat. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 13. Berlin: Springer-Verlag; 1990: (in press).

    Google Scholar 

  7. Carman, J. G.; Jefferson, N. E.; Campbell, W. F. Induction of embryonicTriticum aestivum L. calli. I. Quantification of genotype and culture medium effects. Plant Cell Tis. Org. Cult. 12:83–95; 1988.

    Article  Google Scholar 

  8. Carman, J. G.; Jefferson, N. E.; Campbell, W. F. Induction of embryogenicTriticum aestivum L. calli. II. Quantification of organic addenda and other culture variable effects. Plant Cell Tis. Org. Cult. 12:97–110; 1988.

    Article  Google Scholar 

  9. Cochrane, M. P.; Duffus, C. M. Morphology and ultrastructure of immature cereal grains in relation to transport. Ann. Bot. 44:67–72; 1979.

    Google Scholar 

  10. Collis-George, N.; Melville, M. D. Models of oxygen diffusion in respiring seeds. J. Exp. Bot. 25:1053–1069; 1974.

    Article  CAS  Google Scholar 

  11. Davies, D. D. Anaerobic metabolism and the production of organic acids. In: Davies, D. D., ed. The biochemistry of plants, vol. 2: metabolism and respiration. New York: Academic Press; 1980:581–611.

    Google Scholar 

  12. Dungey, N. O.; Pinfield, N. J. The effect of temperature on the supply of oxygen to embryos of intactAcer pseudoplatinus L. seeds. J. Exp. Bot. 31:983–992; 1980.

    Article  Google Scholar 

  13. Finkelstein, R. R.; Crouch, M. L. Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 81:907–912; 1986.

    PubMed  CAS  Google Scholar 

  14. Gamborg, O. L.; Miller, R. A.; Ojima, K. Plant cell cultures. I. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  15. Gifford, R. M.; Bremner, P. M. Accumulation and conversion of sugars by developing wheat grains. II. Light requirement for kernels culturedin vitro. Aust. J. Pl. Phys. 8:631–640; 1981.

    Article  CAS  Google Scholar 

  16. Gray, D. J.; Conger, B. V. Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions ofDactylis glomerata (Gramineae). Plant Cell Tis. Org. Cult. 4:123–133; 1985.

    Article  CAS  Google Scholar 

  17. Haeder, H.; Beringer, H. Long distance transport of potassium in cereals during grain filling in intact plants. Physiol. Plant. 62:439–444; 1984.

    Article  CAS  Google Scholar 

  18. Hashim, Z. N. Analyses of somaclonal variation in hexaploid wheat (Triticum aestivum L.). Ph.D. Dissertation, Utah State University, Logan, UT. 1988:68–78.

    Google Scholar 

  19. Ho, L. C.; Gifford, R. M. Accumulation and conversion of sugars by developing wheat grains. J. Exp. Bot. 35:58–73; 1984.

    Article  CAS  Google Scholar 

  20. Huber, A. G.; Grabe, D. F. Endosperm morphogenesis in wheat: transfer of nutrients from the antipodals to the lower endosperm. Crop Sci. 27:1248–1252; 1987.

    Article  Google Scholar 

  21. Huber, A. G.; Grabe, D. F. Endosperm morphogenesis in wheat: termination of nuclear division. Crop Sci. 27:1252–1256; 1987.

    Article  Google Scholar 

  22. Karssen, C. M.; Brinkhorst-van der Swan, D. L. C.; Breekland, A. E., et al. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes ofArabidopsis thaliana (L.) Heynh. Planta 157:158–165; 1983.

    Article  CAS  Google Scholar 

  23. King, R. W. Abscisic acid in developing wheat grains and its relationship to grain growth in maturation. Planta 132:43–51; 1976.

    Article  CAS  Google Scholar 

  24. LaRosa, P. C.; Hasegawa, P. M.; Rhodes, D., et al. Abscisic acid stimulated osmotic adjustment and its involvement in adaptation of tobacco cells to NaCl. Plant Physiol. 85:174–181; 1987.

    PubMed  CAS  Google Scholar 

  25. Maddock, S. E.; Lancaster, V. A.; Risiott, R., et al. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum). J. Exp. Bot. 34:915–926; 1983.

    Article  Google Scholar 

  26. Milborrow, B. V.; Robinson, D. R. Factors affecting the biosynthesis of abscisic acid. J. Exp. Bot. 24:537–548;1973.

    Article  CAS  Google Scholar 

  27. Morris, P. C.; Weiler, E. W.; Maddock, S. E., et al. Determination of endogenous abscisic acid levels in immature cereal embryos during in vitro culture. Planta 173:110–116; 1988.

    Article  CAS  Google Scholar 

  28. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  29. Norstog, K.; Klein, R. M. Development of cultured barley embryos. II. Precocious germination and dormancy. Can. J. Bot. 50:1887–1894; 1972.

    Google Scholar 

  30. Nutbeam, A. R.; Duffus, C. M. Oxygen exchange in the pericarp green layer of immature cereal grains. Plant Physiol. 62:360–362; 1978.

    PubMed  CAS  Google Scholar 

  31. Ozias-Akins, P.; Vasil, I. K. Plant regeneration from cultured immature embryos and inflorescences ofTriticum aestivum L. (Wheat): evidence for somatic embryogenesis. Protoplasma 110:95–105; 1982.

    Article  Google Scholar 

  32. Ozias-Akins, P.; Vasil, I. K. Improved efficiency and normalization of somatic embryogenesis inTriticum aestivum (Wheat). Protoplasma 117:40–44; 1983.

    Article  Google Scholar 

  33. Papenfuss, J. M.; Carman, J. G.: Enhanced regeneration from wheat callus cultures using dicamba and kinetin. Crop. Sci. 27:588–593; 1987.

    Article  CAS  Google Scholar 

  34. Pate, J. S. Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol. Biochem. 5:109–119; 1973.

    Article  CAS  Google Scholar 

  35. Quatrano, R. S. The role of hormones during seed development. In: P. J. Davies, ed. Plant hormones and their role in plant growth and development, Boston: Martinus Nijhoff Pub.; 1987:494–514.

    Google Scholar 

  36. Radley, M. The development of wheat grain in relation to endogenous growth substances. J. Exp. Bot. 27:1009–1021; 1976.

    Article  CAS  Google Scholar 

  37. Radley, M. Factors affecting grain enlargement in wheat. J. Exp. Bot. 29:919–934; 1978.

    Article  CAS  Google Scholar 

  38. Raikhel, N. V.; Hughes, D. W.; Galau, G. A. An enzyme-immunoassay for quantitative analysis of abscisic acid in wheat. In: Fox, J. E.; Jacobs, M., eds. Molecular biology of plant growth control. New York: Alan R. Liss; 1987:197–207.

    Google Scholar 

  39. Rajasekaran, K.; Hein, M. B.; Davis, G. C., et al. Endogenous growth regulators in leaves and tissue cultures onPennisetum purpureum Schum. J. Plant Physiol. 130:13–25; 1987.

    CAS  Google Scholar 

  40. Rajasekaran, K.; Hein, M. B.; Vasil, I. K. Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants ofPennisetum purpureum Schum. 1. Effects in vivo and in vitro of glyphosate, fluridone and paclobutrazol. Plant Physiol. 84:47–51; 1987.

    PubMed  CAS  Google Scholar 

  41. Rajasekaran, K.; Vine, J.; Mullins, M. G. Dormancy in somatic embryos and seeds ofVitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154:139–144; 1982.

    Article  CAS  Google Scholar 

  42. Ryczkowski, M. Changes in osmotic value of the central vacuole and endosperm sap during the growth of the embryo and ovule. Z. Pflanzenphysiol. 61:422–439; 1969.

    Google Scholar 

  43. Schenk, R. U.; Hildebrandt, A. C. Medium and techniques for induction and plant growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199–204; 1972.

    CAS  Google Scholar 

  44. Simpson, R. J.; Hambers, H.; Dalling, M. J. Translocation of nitrogen in a vegetative wheat plant (Triticum aestivum). Physiol. Plant. 56:11–17; 1982.

    Article  CAS  Google Scholar 

  45. Singh, B. J.; Jenner, C. F. Culture of detached ears of wheat in liquid culture: modification and extension of the method. Aust. J. Plant Physiol. 10:227–236; 1983.

    Article  Google Scholar 

  46. Van der Plas, L. H. W.; Wagner, M. J. Effect of oxygen on growth and respiration of potato tuber callus. Plant Cell Tis. Org. Cult. 7:217–225; 1986.

    Article  Google Scholar 

  47. Vasil, I. K. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–218; 1987.

    Google Scholar 

  48. Walbot, V.; Clutter, M.; Sussex, I. M. Reproductive development and embryogeny inPhaseolus. Phytomorphology 22:59–68; 1972.

    Google Scholar 

  49. Walker-Simmons, M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84:61–66; 1987.

    PubMed  CAS  Google Scholar 

  50. Wang, T. L.; Smith, C. M.; Cook, S. K., et al. An analysis of seed development inPisum sativum III. The relationship between ther locus, the water content and the osmotic potential of seed tissuesin vivo andin vitro. Ann. Bot. 59:73–80; 1987.

    Google Scholar 

  51. Wenck, A. R.; Gonger, B. V.; Trigiano, R. N., et al. Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins. Plant Physiol. 88:990–992;1988.

    Article  PubMed  CAS  Google Scholar 

  52. Wheeler, A. W. Changes in growth-substance contents during growth of wheat grains. Ann. Appl. Biol. 72:327–334; 1972.

    Article  CAS  Google Scholar 

  53. Yeung, E. C.; Brown, D. C. W. The osmotic environment of developing embryos ofPhaseolus vulgaris. Z. Pflanzephysiol. 106:149–156; 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Plant Editors note: Proceedings from a special symposium entitled “Synthetic Seeds” presented at the 39th annual meeting of the Tissue Culture Association, Las Vegas, Nevada on June 16, 1988. Associate Editor Keith Redenbaugh organized the symposium and handled reviews of the manuscripts.

Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan UT, 84322-4845. Approved as journal paper no. 3649.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carman, J.G. Thein ovulo environment and its relevance to cloning wheat via somatic embryogenesis. In Vitro Cell Dev Biol 25, 1155–1162 (1989). https://doi.org/10.1007/BF02621267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621267

Key words

Navigation