Skip to main content
Log in

Two relative efficiencies of polymorphic enzymes for characterizing cell lines, detecting contaminations, and monitoring transplants

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A new calculation of the relative efficiency of polymorphic enzyme markers, called the REB, was determined and compared with one of Fisher's determinations of the relative efficiency called REA here. The REA estimates the chance of failing, and 1-REA of succeeding, to show a phenotypic difference between two randomly selected persons or cultured cell lines (Case 1). In this study it was shown that the REA also estimates the chance of detecting a cell line mislabeling or similar mixup (Case 2) and a cell line cross-contamination leading to the complete replacement of an original line by contaminating line (Case 3). The new REB determines the probability of failing, and 1-REB of succeeding, to detect a contamination of an original line by another line leading to their coexistence, or at least a sufficiently long period of transitional coexistence before one overgrows the other. The REA and REB also apply to determining the efficiency of polymorphic markers in detecting donor and recipient cells in tissue transplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, H. Enzyme polymorphism in man. Proc. R. Soc. Lond. (Biol.) 164: 298–310; 1966.

    CAS  Google Scholar 

  2. Lewontin, R. C.; Hubby, J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations ofDrosophila pseudobscura. Gentics 54: 595–609; 1966.

    CAS  Google Scholar 

  3. Powell, J. R. Protein variation in natural populations of animals. Evol. Biol. 8: 79–119; 1975.

    CAS  Google Scholar 

  4. Fisher, R. A. Standard calculations for evaluating a blood-group system. Hereditary 5: 95–102; 1951.

    CAS  Google Scholar 

  5. Thomas, E. D.; Storb, R.; Clift, R. A.; Fefer, A.; Johnson, F. L.; Neiman, P. E.; Lerner, K. G.; Glucksberg, H.; Buckner, C. D. Bone-marrow transplantation. N. Engl. J. Med. 292: 895–902; 1975.

    Article  PubMed  CAS  Google Scholar 

  6. Harris, H.; Hopkinson, D. A. Handbook of enzyme electrophoresis in human genetics. Amsterdam and Oxford: North-Holland/American Elsevier; 1976.

    Google Scholar 

  7. Kömpf, J.; Bissbort, S. Population genetics of red cell glyoxalase I (E.C.: 4.4.1.5). Humangenetik 28: 175–176; 1975.

    Article  PubMed  Google Scholar 

  8. Parr, C. W.; Bagster, I. A.; Welch, S. G. Human red cell glyoxalase I polymorphism. Biochem. Genet. 15: 109–113; 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen, P. T. W.; Omenn, G. S. Human malic enzyme: high-frequency polymorphism of the mitochondrial form. Biochem. Genet. 7: 303–311; 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Hopkinson, D. A.; Harris, H. A third phosphoglucomutase locus in man. Ann. Hum. Genet. 31: 359–367; 1968.

    PubMed  CAS  Google Scholar 

  11. Turner, B. M.; Turner, V. S.; Beratis, N. G.; Hirschhorn, K. Polymorphism of human α-fucosidase. Am. J. Hum. Genet. 27: 651–661; 1975.

    PubMed  CAS  Google Scholar 

  12. Hopkinson, D. A.; Harris, H. Rare phosphoglucomutase phenotypes. Ann. Hum. Genet. 30: 167–181; 1966.

    PubMed  CAS  Google Scholar 

  13. Hopkinson, D. A.; Mestriner, M. A.; Cortner, J.; Harris, H. Esterase D: a new human polymorphism. Ann. Hum. Genet. 37: 119–137; 1973.

    PubMed  CAS  Google Scholar 

  14. Spencer, N.; Hopkinson, D. A.; Harris, H. Adenosine deaminase polymorphism in man. Ann. Hum. Genet. 32: 9–14; 1968.

    Google Scholar 

  15. Bowan, J. E.; Frischer, H.; Ajmar, F.; Carson, P. E.; Gower, M. K. Population, family, and biochemical investigation of human adenylate kinase polymorphism. Nature 214: 1156–1158; 1967.

    Article  Google Scholar 

  16. Carter, N. D.; Fildes, R. A.; Fitch, L. I.; Parr, C. W.; Genetically determined electrophoretic variations of human phosphogluconate dehydrogenase. Acta Genet. (Basel) 18: 109–122; 1968.

    CAS  Google Scholar 

  17. Lewis, W. H. P.; Harris, H. Human red cell peptidases. Nature 215: 351–355; 1967.

    Article  PubMed  CAS  Google Scholar 

  18. Blake, N. M.; Kirk, R. L.; Lewis, W. H. P.; Harris, H. Some further peptidase B phenotypes. Ann. Hum. Genet. 33: 301–305; 1970.

    PubMed  CAS  Google Scholar 

  19. Povey, S.; Corney, G.; Lewis, W. H. P.; Robson, E. B.; Parrington, J. M.; Harris, H. The genetics of peptidase C in man. Ann. Hum. Genet. 35: 455–465; 1972.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis, W. H. P.; Harris, H. Peptidase D (prolidase) variants in man. Ann. Hum. Genet. 32: 317–322; 1969.

    PubMed  CAS  Google Scholar 

  21. Davidson, R. G.; Cortner, J. A.; Rattazzi, M. C.: Ruddle, F. H.; Lubs, H. A. Genetic polymorphisms of human mitochondrial glutamic oxaloacetic transaminase. Science 169: 391–392; 1970.

    Article  PubMed  CAS  Google Scholar 

  22. Ananthakrishnan, R.; Beck, W.; Walter, H. Polymorphism of mitochonrrial glutamic oxalo-acetic transaminase in a German population. Humangenetik 17: 89–90; 1972.

    Article  PubMed  CAS  Google Scholar 

  23. Hackel, E.; Hopkinson, D. A.; Harris, H. Population studies on mitochondrial glutamate-oxaloacetic transaminase. Ann Hum. Genet. 35: 491–496; 1972.

    Article  PubMed  CAS  Google Scholar 

  24. Harris, H. The principles of human biochemical genetics. Amsterdam and Oxford: North-Holland/American Elsevier; 1975.

    Google Scholar 

  25. Wright, W. C.; Fogh, J. Isozyme characterization of cultured human tumor cell lines (abstr.). Fed. Proc. 36: 1079; 1977.

    Google Scholar 

  26. Fogh, J.; Wright, W. C.; Daniels, W. P. Identification of cultured human tumor cell lines by isozyme analysis (abstr.). In Vitro 14: 368–369; 1978.

    Google Scholar 

  27. Leibovitz, A.; Wright, W. C.; Pathak, S.; Siciliano, M. J.; Daniels, W. P.; Fogh, H.; Fogh, J. Detection and analysis of a glucose-6-phosphate dehydrogenase phenotype B cell line contamination. J. Natl. Cancer Inst. 63: 635–645; 1979.

    Google Scholar 

  28. Mourant, A. E.; Kopec, A. C.; Domaniewska-Sobczak, K. The distribution of the human blood groups and other polymorphisms. Oxford monographs on medical genetics. London, New York, Toronto: Oxford University Press; 1976.

    Google Scholar 

  29. Menozzi, P.; Piazza, A.; Cavalli-Sforza, L. Synthetic maps of human gene frequencies in Europeans. Science 201: 786–792; 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Fogh, J.; Trempe, G. New human tumor cell lines. Fogh, J. ed. Human tumor cellsin vitro. New York and London: Plenum; 1975: 115–159.

    Google Scholar 

  31. Fogh, J.; Wright, W. C.; Loveless, J. D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst. 58: 209–214; 1977.

    PubMed  CAS  Google Scholar 

  32. Fogh, J.; Fogh, J. M.; Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59: 221–225; 1977.

    PubMed  CAS  Google Scholar 

  33. Wright, W. C.; Daniels, W. P.; Fogh, J. Stability of polymorphic enzyme phenotypes in human tumor cell lines. Proc. Soc. Exp. Biol. Med. 162: 503–509; 1979.

    PubMed  CAS  Google Scholar 

  34. Wright, W. C.; Daniels, W. P.; Fogh, J. Distinction of 71 cultured human tumor cell lines by polymorphic enzyme analysis. Submitted for publication.

  35. Siciliano, M. J.; Pathak, S.; Cailleau, R. Expression of enzyme genes trisomically and tetrasomically represented in aneuploid human cancer cells (abstr.). In Vitro 15: 205; 1979.

    Google Scholar 

  36. Nichols, E. A.; Ruddle, F. H. Comparative sensitivities of electrophoretic assays for human enzymes. Biochem. Genet. 17: 127–132; 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Wright, W. C. Enzyme microelectrophoresis of cell colonies. Exp. Cell Res. 82: 303–309; 1973.

    Article  PubMed  CAS  Google Scholar 

  38. Wright, W. C. Microelectrophoresis of enzymes in animal cell colonies. Methods Cell Biol. 20: 499–513; 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Weiden, P. L.; Storb, R.; Tsoi, M.-S. Marrow origin of canine alveolar macrophages. J. Reticuloendothel. Soc. 17: 342–345; 1975.

    PubMed  CAS  Google Scholar 

  40. Beckman, G.; Beckman, L.; Ponten, J.; Westermark, B. G-6-PD and PGM phenotypes of 16 continuous human tumor cell lines. Hum. Hered. 21: 238–241; 1971.

    Article  PubMed  CAS  Google Scholar 

  41. Povey, S.; Hopkinson, D. A.; Harris, H.; Franks, L. M. Characterization of human cell lines and differentiation from HeLa by enzyme typing. Nature 264: 60–63; 1976.

    Article  PubMed  CAS  Google Scholar 

  42. O'Brien, S. J.; Kleiner, G.; Olson, R.; Shannon, J. E. Enzyme polymorphisms as genetic signatures in human cell cultures. Science 195: 1345–1348; 1977.

    Article  PubMed  Google Scholar 

  43. Fogh, J. Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors. Natl. Cancer Inst. Monogr. 49: 5–9; 1978.

    PubMed  Google Scholar 

  44. Siciliano, M. J.; Barker, P. E.; Cailleau, R. Mutually exclusive genetic signatures of human breast tumor cell lines with a common chromosomal marker. Cancer Res. 39: 919–922; 1979.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was developed from the author's involvement in the human tumor cell-line characterization project at Sloan-Kettering Institute and he acknowledges this opportunity and the benefits of his association with Dr. Jørgen Fogh and colleagues in the Human Tumor Cell Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, W.C. Two relative efficiencies of polymorphic enzymes for characterizing cell lines, detecting contaminations, and monitoring transplants. In Vitro 16, 875–883 (1980). https://doi.org/10.1007/BF02619425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619425

Key words

Navigation