Skip to main content
Log in

The development of chick spinal cord in tissue culture

III. Neuronal precursor cells in culture

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

On culturing fragments of neural tube of Hamilton and Hamburger (H & H) Stage 10 chick embryos, large multipolar neurons developed. The aim of this investigation was to determine whether these neurons in culture developed from dividing neuronal precursor cells, from postmitotic precursor cells, or both. Of the neurons formed during the 20 d of culturing in the presence of [3H]thymidine, 26% were unlabeled, indicating that they originated from cells that were already postmitotic at the time of explantation. By labeling cells of the neural tube in vivo and determining the total number of cells in the neural tube, we estimated that the neural tube of chick embryos of H & H Stage 10 contained approximately 1000 (3.3%) postmitotic cells. By estimating the total number of neurons that formed in 20-d cultures and the percentage of labeled and unlabeled neurons, we concluded that the postmitotic neurnal precursor cells survived well in culture and proceeded on their predetermined path of differentiation.

By considering the number of neurons found in the spinal cord in vivo and the number of labeled neurons found in cultures, we concluded that only a relatively small fraction of the dividing neuronal precursor cells entered the postmitotic stages of differentiation and formed neurons in cultures. The majority of cells that did this, entered the postmitotic stage of differentiation during the first 5 d in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szepsenwol, J.; Goldstein, S. Differentiation “In Vitro” des cellules nerveuses jeunes. Arch. Exp. Zellforsch. 21: 155–171; 1938.

    Google Scholar 

  2. Lyser, K. The development of the chick embryo diencephalon and mesencephalon during the initial phases of neuroblast differentiation. J. Embryol. Exp. Morphol. 16: 497–517; 1966.

    PubMed  CAS  Google Scholar 

  3. Kim, S. U.; Wenger, E.; Fedoroff, S. A study of cells from the neural tube of chick embryos in tissue culture. J. Cell. Biol. 47: 105a-106a; 1970.

    Google Scholar 

  4. Fisher, K. R. S.; Fedoroff, S. The development of chick spinal cord in tissue culture. I. Fragment cultures from embryos of various developmental stages. In Vitro 13: 569–579; 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Juurlink, B. H. J.; Fedoroff, S The development of mouse spinal cord in tissue culture: I. Cultures of whole mouse embryos and spinal cord primordia. In Vitro 15: 86–94; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Lyser, K. Early differentiation of the chick embryo spinal cord in organ culture: Light and electron microscopy. Anat. Res. 169: 45–64; 1971a.

    Article  CAS  Google Scholar 

  7. Lyser, K. Further differentiation of early neural tube explants in organ culture as studied by electron microscopy. Wilhelm Roux Arch. 168: 269–281; 1971b.

    Article  Google Scholar 

  8. Altman, J. Autorodiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 128: 431–437. 1966.

    Article  Google Scholar 

  9. Hinds, J. W. Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. Comp. Neurol 134: 287–304; 1968.

    Article  PubMed  CAS  Google Scholar 

  10. Angevine, J. B. Critical cellular events in the shaping of neural centers. In: Schmidt, F. O. ed. The neurosciences, second study program. New York. The Rockefeller University Press; 1970: 62–73.

    Google Scholar 

  11. Nornes, H. O.; Das, G. P. Temporal patterns of neurogenesis in spinal cord of rat. I. An autoradiographic study-time and sites of origin and migration and settling patterns of neuroblasts. Brain Res. 73: 121–138; 1974.

    Article  PubMed  CAS  Google Scholar 

  12. Jacobson, M. A plenitude of neurons. In: Gottlieb, G. ed. Studies on the development of behavior and the neurvous system. Vol. 2. New York: Academic Press 1974: 151–166.

    Google Scholar 

  13. Martin, A.; Langman, J. The development of the spinal cord examined by autoradiography. J. Embryol. Exp. Morphol. 4: 25–35; 1965.

    Google Scholar 

  14. Sechrist, J. W. Onset of neurogenesis in the embryonic neural tube (abstr.). Anat. Rec. 178: 460; 1974.

    Google Scholar 

  15. Sechrist, J. W. Further studies on early neurogenesis in the chick neuraxis. An autoradiographic analysis of serial epoxy sections cumulatively labeled by3H-thymidine. Anat. Res. 181: 474; 1975.

    Google Scholar 

  16. McConnell, J. A. A comparative autoradiographic study of early neuron origin in the mouse and chick. Tuscon, Arizona: University of Arizona; 1977b. Thesis.

    Google Scholar 

  17. McConnell, J. A.; Sechrist, J. W. Identification of early neurons in the brain stem and spinal cord. I. An autoradiographic study in the chick. J. Comp. Neurol. 192: 769–783; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Fisher, K. R. S.; Fedoroff, S. The development of chick spinal cord in tissue culture. II. Cultures of whole chick embryos. In Vitro 14: 878–886; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Fedoroff, S.; Krukoff, T. L.; Fisher, K. R. S.; Juurlink, B. H. J. Neuronal precursor cells in cultures (abstr.). Proc. Can. Fed. Biol. Soc. 22: 36; 1979.

    Google Scholar 

  20. Hamburger, V.; Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88: 49–92; 1951.

    Article  Google Scholar 

  21. Dossel, W. E. Preparation of tungsten microneedles for use in embryonic research. Lab. Invest. 7: 171–173; 1958.

    PubMed  CAS  Google Scholar 

  22. Juurlink, B. H. J.; Dell, R. A simple method for producing fine stainless steel dissecting needles and microscalpels. Experientia 36: 1335; 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Bornstein, M. D. Reconstituted rat-tail collagen used as substrate for tissue culture on coverslips in Maximow slides and roller tubes. Lab. Invest. 7: 134–137; 1958.

    PubMed  CAS  Google Scholar 

  24. Morgan, J. F.; Morton, H. J.; Parker, R. C. Nutrition of animal cells in tissue culture. I. Initial studies on a synthetic medium. Proc. Soc. Exp. Biol. Med. 73: 1–8; 1950.

    PubMed  CAS  Google Scholar 

  25. Fisher, K. R. S.; Fedoroff, S.; Wenger, E. L. The effect of osmotic pressure on neurogenesis in cultures of chick embryo spinal cords. In Vitro 11: 329–337; 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, S. U. Observations on cellular granule cells in tissue culture. A silver and electron microscopic study. Z. Zellforsch. 107: 454–456; 1970.

    Article  PubMed  CAS  Google Scholar 

  27. Bullaro, J. C.; Brookman, D. H. Comparison of skeletal muscle manolayer cultures initiated with cells dissocited by the vortex and trypsin methods. In Vitro 12: 564–570; 1976.

    PubMed  CAS  Google Scholar 

  28. Cowdry, E. V. The development of the cystoplasmic constituents of the nerve cells of the chick. Am. J. Anat. 15: 389–429; 1914.

    Article  Google Scholar 

  29. Tello, J. F. Les differentiations neuronales dans l'embryou du poulet, pendent les premiers jours de l'incubation. Trav. Lab. Rech. Biol. Univ. Madrid 21: 1–93; 1923.

    Google Scholar 

  30. Windle, W. F.; Austin, M. F. Neurofibrillar development with central nervous system of chick embryos up to 5 days incubation. J. Comp. Neurol. 63: 431–463; 1936.

    Article  Google Scholar 

  31. Fujita, S. Analysis of neuron differentiation in the central nervous system of tritiated thymidine autoradiography. J. Comp. Neurol. 122: 311–328; 1964.

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton, H. L. Lillie's development of the chick. An introduction to embryology. William, B. H. ed. New York: Henry Holt Co.; 1952.

    Google Scholar 

  33. Langman, J.; Guerrant, R.; Freeman, B. Behavior of neuroepithelial cells during closure of the neural tube. J. Comp. Neurol. 127: 399–412; 1966.

    Article  PubMed  CAS  Google Scholar 

  34. Fujita, S. Kinetics of cellular proliferation. Exp. Cell Res. 28: 52–60; 1962.

    Article  PubMed  CAS  Google Scholar 

  35. Korr, H. Proliferation of different cell types in the brain. Adv. Anat. Embryol. Cell Biol. 61: 1–72; 1980.

    PubMed  CAS  Google Scholar 

  36. Nawar, N. N. Y.; Sakla, F. B.; Mahra, Z. Y. Quantitative studies on the prenatal growth of the spinal cord of the albino mouse. Acta Anat. (Basel) 88: 202–216; 1974.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedoroff, S., Krukoff, T.L. & Fisher, K.R.S. The development of chick spinal cord in tissue culture. In Vitro 18, 183–195 (1982). https://doi.org/10.1007/BF02618570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618570

Key words

Navigation