Skip to main content
Log in

Continuous dilution culture system for studies on gene-enzyme regulation in synchronous cultures of plant cells

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A thermophilic species ofChlorella was used as a model for higher eucaryotic cells in the development of a continuous dilution system for maintenance of nearly constant environmental conditions during synchronous growth of cells cultured at high concentrations. An equilibrium (isopycinic) centrifugation procedure for selection of large numbers of highly synchronous daughter cells in Ficoll density gradients was also developed. By use of these two procedures, it was possible to show that genes of both inducible and biosynthetic enzymes are continuously available for transcription during the eucaryotic cell cycle. Moreover, with programmed changes in the culture conditions during synchronouw growth, it was possible to change step patterns of biosynthetic enzymes to continuous patterns and vice versa. These results, coupled with studies with inhibitors of protein and RNA synthesis, indicate that gene transcription in at least some eucaryotes is responsive to changes in the external environment throughout the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shihira, I., and R. W. Krauss. 1965.Chlorella, Physiology and Taxonomy of Forty-one Isolates. Port City Press, Baltimore, pp. 30–31.

    Google Scholar 

  2. Sorokin, C. 1957. Changes in photosynthetic activity in the course of cell development inChlorella. Physiol. Plant. 10: 659–666.

    Article  CAS  Google Scholar 

  3. Sorokin, C., and J. Myers. 1953. A high-temperature strain ofChlorella. Science 117: 330–331.

    Article  PubMed  CAS  Google Scholar 

  4. Murakami, S., Y. Morimura, and A. Takamiya. 1963. Electron microscopic studies along cellular life cycle ofChlorella ellipsoidea. In:Studies on Microalgae and Photosynthetic Bacteria (Special issue of Plant and Cell Physiol., Ed. by Japanese Soc. Plant Physiologists). The University of Tokyo Press, pp. 65–83.

  5. Wanka, F. 1968. Ultrastructural changes in normal and colchicine-inhibited cell division ofChlorella. Protoplasma 66: 105–130.

    Article  PubMed  CAS  Google Scholar 

  6. Sorokin, C., and J. Myers. 1957. The course of respiration during the life cycle of Chlorella cells. J. Gen. Physiol. 40: 579–592.

    Article  PubMed  CAS  Google Scholar 

  7. Baker, A. L., and R. R. Schmidt. 1963. Intra-cellular distribution of phosphorus during synchronous growth ofChlorella pyrenoidosa. Biochim. Biophys. Acta 74: 75–83.

    Article  CAS  Google Scholar 

  8. Mitchison, J. M., and W. S. Vincent. 1966. A method of making synchronous cell cultures by density gradient centrifugation. In: I. L. Cameron, and G. M. Padilla (Eds.),Cell Synchrony—Studies in Biosynthetic Regulation. Academic Press, New York, pp. 328–331.

    Google Scholar 

  9. Sinclair, R., and D. H. L. Bishop. 1965. Synchronous culture of strain-L mouse cells. Nature 205: 1272–1273.

    Article  Google Scholar 

  10. Fox, T. O., and A. B. Pardee. 1970. Animal cells: noncorrelation of length of G1 phase with size after mitosis. Science 167: 80–82.

    Article  PubMed  CAS  Google Scholar 

  11. Leif, R. C., and J. Vinograd. 1964. The distribution of buoyant density of human erythrocytes in bovine albumin solutions. Proc. Natl. Acad. Sci. U. S. A. 51: 520–528.

    Article  PubMed  CAS  Google Scholar 

  12. Sitz, T. O., A. B. Kent, H. A. Hopkins, and R. R. Schmidt. 1970. Equilibrium densitygradient procedure for selection of synchronous cells from asynchronous cultures. Science 168: 1231–1232.

    Article  PubMed  CAS  Google Scholar 

  13. Steward, D. L., Shaeffer, J. R., and R. M. Humphrey. 1968. Breakdown and assembly of polyribosomes in synchronized Chinese hamster cells. Science 161: 791–793.

    Article  PubMed  CAS  Google Scholar 

  14. Hopkins, H. A., J. B. Flora, and R. R. Schmidt. 1972. Periodic DNA accumulation during the cell cycle of a thermophilic strain ofChlorella pyrenoidosa. Arch. Biochem. Biophys. 153: 845–819.

    Article  PubMed  CAS  Google Scholar 

  15. Hopkins, H. A., T. O. Sitz, and R. R. Schmidt. 1970. Selection of synchronousChlorella cells by centrifugation to equilibrium in aqueous Ficoll. J. Cell. Physiol. 76: 231–234.

    Article  PubMed  CAS  Google Scholar 

  16. Flora, J. B. 1969. Model system for study of the control of enzyme synthesis in an eucaryotic cell. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061.

    Google Scholar 

  17. Schmidt, R. R. 1966. Intracellular control of enzyme synthesis and activity during synchronous growth ofChlorella. In: I. L. Cameron and G. M. Padilla (Eds.),Cell Synchrony—Studies in Biosynthetic Regulation. Academic Press, New York, pp. 189–235.

    Google Scholar 

  18. Molloy, G. R., and R. R. Schmidt. 1970: Studies on the regulation of ribulose-1,5-diphosphate carboxylase synthesis during the cell cycle of the eucaryoteChlorella. Biochem. Biophys. Res. Commun. 40: 1125–1133.

    Article  PubMed  CAS  Google Scholar 

  19. Talley, D. J., L. H. White, and R. R. Schmidt. 1972. Evidence for NADH- and NADPH-specific isozymes of glutamate dehydrogenase and the continuous inducibility of the NADPH-specific isozyme throughout the cell cycle of the eucaryoteChlorella. J. Biol. Chem. 247: 7927–7935.

    PubMed  CAS  Google Scholar 

  20. Schmidt, R. R., and H. T. Spencer. 1964. Steady-state and synchronous growth ofChlorella pyrenoidosa. J. Cell. Comp. Physiol. 64: 249–255.

    Article  CAS  Google Scholar 

  21. Johnson, R. A., and R. R. Schmidt. 1963. Intracellular distribution of sulfur during synchronous growth ofChlorella pyrenoidosa. Biochim. Biophys. Acta 74: 428–437.

    Article  PubMed  CAS  Google Scholar 

  22. Hare, T. A., and R. R. Schmidt. 1968. Continuous dilution method for mass culture of synchronized cells. Appl. Microbiol. 16: 496–499.

    PubMed  CAS  Google Scholar 

  23. Zielke, H. R., and P. Filner. 1971. Synthesis and turnover of nitrate reductase induced by nitrate in cultured tobacco cells. J. Biol. Chem. 246: 1772–1779.

    PubMed  CAS  Google Scholar 

  24. Schimke, R. T., and D. Doyle. 1970. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39: 939–976.

    Article  Google Scholar 

  25. Darnell, J. E., W. R. Jelinek, and G. R. Molloy. 1973. Biogenesis of mRNA: genetic regulation in mammalian cells. Science 181: 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt, R. R. 1974. Transcriptional and post-transcriptional control of enzyme levels in ecaryotic microorganisms. In: G. M. Padilla, I. L. Cameron, and A. H. Zimmerman (Eds.),Cell Cycle Controls. Academic Press, New York, pp. 201–233.

    Google Scholar 

  27. Schmidt, R. R. 1974. Role of enzyme stability and turnover in the regulation of biosynthetic enzyme levels during the cell cycle of eucaryotic microorganisms. In: R. T. Schimke and N. Katunuma (Eds.),Regulation and Significance of Protein Turnover. Academic Press, New York, in press.

    Google Scholar 

  28. Donachie, W. D., and M. Masters. 1969. Temporal control of gene expression in bacteria. In: G. M. Padilla, G. L. Whitson, and I. L. Cameron (Eds.),The Cell Cycle—Gene-Enzyme Interactions. Academic Press, New York, pp. 37–76.

    Google Scholar 

  29. Goodwin, B. C. 1966. An entrainment model for timed enzyme synthesis in bacteria. Nature 209: 479–481.

    Article  PubMed  CAS  Google Scholar 

  30. Halvorson, H. O., R. M. Bock, P. Tauro, R. Epstein, and M. La Berge. 1966. Periodic enzyme synthesis in synchronous cultures of yeast. In: I. L. Cameron and G. M. Padilla (Eds.),Cell Synchrony—Studies in Biosynthetic Regulation. Academic Press, New York, pp. 102–106.

    Google Scholar 

  31. Tauro, P., and H. O. Halvorson. 1966. Effect of gene position on the timing of enzyme synthesis in synchronous cultures of yeast. J. Bacteriol. 92: 652–661.

    PubMed  CAS  Google Scholar 

  32. Mitchison, J. M., and J. Creanor. 1969. Linear synthesis of sucrase and phosphatases during the cell cycle ofSchizosaccharomyces pombe. J. Cell Sci. 5: 373–391.

    PubMed  CAS  Google Scholar 

  33. Baechtel, F. S., H. A. Hopkins, and R. R. Schmidt. 1970. Continuous inducibility of isocitrate lyase during the cell cycle of the eucaryoteChlorella. Biochim. Biophys. Acta 217: 216–219.

    PubMed  CAS  Google Scholar 

  34. Keumpel, P., M. Masters, and A. B. Pardee. 1965. Bursts of enzyme synthesis in the bacterial duplication cycle. Biochem. Biophys. Res. Commun. 18: 858–867.

    Article  Google Scholar 

  35. Masters, M., and A. B. Pardee. 1965. Sequence of enzyme synthesis and gene replication during the cell cycle ofBacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 54: 64–70.

    Article  PubMed  CAS  Google Scholar 

  36. Vassef, A. A., J. B. Flora, J. G. Weeks, B. S. Bibbs, and R. R. Schmidt. 1973. The effects of enzyme synthesis and stability and of deoxyribonucleic acid replication on the cellular levels of aspartate transcarbamylase during the cell cycle of the eucaryoteChlorella. J. Biol. Chem. 248: 1976–1985.

    PubMed  CAS  Google Scholar 

  37. Mitchison, J. M. 1969. Enzyme synthesis in synchronous cultures. Science 165: 657–663.

    Article  PubMed  CAS  Google Scholar 

  38. Halvorson, H. O., B. L. A. Carter, and P. Tauro. 1971. Synthesis of enzymes during the cell cycle. Adv. Microbial Physiol. 6: 47–106.

    Article  CAS  Google Scholar 

  39. Sitz, T. O., G. R. Molloy, and R. R. Schmidt. 1973. Evidence for the turnover of ribulose-1,5-diphosphate carboxylase and the continuous availability of its structural gene for transcription through the cell cycle of the eucaryoteChlorella. Biochim. Biophys. Acta 319: 103–108.

    PubMed  CAS  Google Scholar 

  40. Molloy, G. R., T. O. Sitz, and R. R. Schmidt. 1973. Evidence for continuous availability of the phosphoribosylglycinamide synthetase structural gene for transcription during the cell cycle of the eucaryoteChlorella. J. Biol. Chem. 248: 1970–1975.

    PubMed  CAS  Google Scholar 

  41. King, P. J., and H. E. Street. 1973. Growth patterns in cell cultures. In: H. E. Street (Ed.),Plant Tissue and Cell Culture. Botanical Monographs Vol. 2, University of California Press, Berkeley and Los Angeles, pp. 269–337.

    Google Scholar 

  42. Veliky, I. A., and S. M. Martin. 1970. A fermeter for plant cell suspension cultures. Can. J. Microbiol. 16: 223–226.

    Article  PubMed  CAS  Google Scholar 

  43. Kurz, W. G. W. 1971. A chemostat for growing higher plant cells in single cell suspension cultures. Exp. Cell Res. 64: 476–479.

    Article  PubMed  CAS  Google Scholar 

  44. King, P. J., K. J. Mansfield, and H. E. Street. 1973. Control of growth and cell division in plant cell suspension cultures. Can. J. Bot. 51: 1807–1823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was supported in part by the U. S. Department of Agriculture (CSRS Grant P.L. 89-106) and the National Science Foundation (GB 17305).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.R. Continuous dilution culture system for studies on gene-enzyme regulation in synchronous cultures of plant cells. In Vitro 10, 306–320 (1974). https://doi.org/10.1007/BF02615312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02615312

Keywords

Navigation