Skip to main content
Log in

Local properties of inexact methods for minimizing nonsmooth composite functions

  • Published:
Mathematical Programming Submit manuscript

Abstract

Methods for minimization of composite functions with a nondifferentiable polyhedral convex part are considered. This class includes problems involving minimax functions and norms. Local convergence results are given for “active set” methods, in which an equality-constrained quadratic programming subproblem is solved at each iteration. The active set consists of components of the polyhedral convex function which are active or near-active at the current iteration. The effects of solving the subproblem inexactly at each iteration are discussed; rate-of-convergence results which depend on the degree of inexactness are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.H. Anderson and M.R. Osborne, “Discrete, nonlinear approximation problems in polyhedral norms,”Numerische Mathematik 28 (1977) 143–156.

    Article  MATH  MathSciNet  Google Scholar 

  • D.H. Anderson and M.R. Osborne, “Discrete, nonlinear approximation problems in polyhedral norms—A Levenberg-like algorithm,”Numerische Mathematik 28 (1977) 157–170.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Cromme, “Strong uniqueness: A far reaching criterion for the convergence analysis of iterative procedures,”Numerische Mathematik 29 (1978) 179–194.

    Article  MATH  MathSciNet  Google Scholar 

  • R.S. Dembo, S. Eisenstat and T. Steihaug, “Inexact Newton methods,”SIAM Journal on Numerical Analysis 19 (1982) 400–408.

    Article  MATH  MathSciNet  Google Scholar 

  • R.S. Dembo and T. Steihaug, “Truncated Newton algorithms for large-scale unconstrained optimization,”Mathematical Programming 26 (1983) 190–212.

    MATH  MathSciNet  Google Scholar 

  • R.S. Dembo and U. Tulowitzki, “Sequential truncated quadratic programming methods,” in: P.T. Boggs, R.H. Byrd and R.B. Schabel, eds,Numerical Optimization 1984 (SIAM, Philadelphia, 1985) pp. 83–101.

    Google Scholar 

  • R. Fletcher, “Methods related to Lagrangian functions,” in: P.E. Gill and W. Murray, eds.,Numerical Methods for Constrained Optimization (Academic Press, London and New York, 1974) pp. 29–66.

    Google Scholar 

  • R. Fletcher,Practical Methods of Optimization, Vol. 2: Constrained Optimization (John Wiley, Chichester and New York, 1981).

    MATH  Google Scholar 

  • R. Fletcher, “Second-order corrections for nondifferentiable optimization,” in: G.A. Watson, ed.,Numerical Analysis, Proceedings, Dundee, 1981 (Springer-Verlag, 1982), pp. 85–114.

  • R. Fletcher, “Anl t penalty method for nonlinear constraints,” in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds.,Numerical Optimization 1984 (SIAM, Philadelphia, 1985) pp. 102–118.

    Google Scholar 

  • R. Fontecilla, “On inexact quasi-Newton methods for constrained optimization,” in: P.T. Boggs, R.B. Byrd and R.B. Schnabel, eds.,Numerical Optimization 1984 (SIAM, Philadelphia, 1985) pp. 102–118.

    Google Scholar 

  • J. Goodman, “Newton's method for constrained optimization,”Mathematical Programming 33 (1985) 162–171.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Jittorntrum and M.R. Osborne, “Strong uniqueness and second-order convergence in nonlinear discrete approximation,”Numerische Mathematik 34 (1980) 439–455.

    Article  MATH  MathSciNet  Google Scholar 

  • R.A. McLean and G.A. Watson, “Numerical methods for nonlinear discretel t approximation problems,” in: L. Collatz, G. Meinardus, and H. Werner, eds.,Numerical Methods of Approximation Theory: Excerpts of the Conference at Oberwolfach, 1979 (Birkhauser-Verlag, Basel, 1980).

    Google Scholar 

  • W. Murray and M.L. Overton, “A projected Lagrangian algorithm for nonlinear minimax optimization,”SIAM Journal of Scientific and Statistical Computing 1 (1980) 345–370.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Murray and M.L. Overton, “A projected Lagrangian algorithm for nonlinearl t optimization,”SIAM Journal on Scientific and Statistical Computing 2 (1981) 207–224.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Nocedal and M.L. Overton, “Projected Hessian updating algorithms for nonlinearly constrained optimization,”SIAM Journal on Numerical Analysis 22 (1985) 821–850.

    Article  MATH  MathSciNet  Google Scholar 

  • M.L. Overton, “Algorithms for nonlinearl t andl fitting,” in: M.J.D. Powell, ed.,Nonlinear Optimization 1981, (Academic Press, 1982) pp. 91–102.

  • R.A. Tapia, “Diagonalized multiplier methods and quasi-Newton methods for constrained optimization,”Journal of Optimization Theory and its Applications 22 (1977) 135–194.

    Article  MATH  MathSciNet  Google Scholar 

  • G.A. Watson, “The minimax solution of an overdetermined system of nonlinear equations,”Journal of the Institute of Mathematics and its Applications 23 (1979) 167–180.

    Article  MATH  MathSciNet  Google Scholar 

  • R.S. Womersley, “Optimality conditions for piecewise smooth functions,”Mathematical Programming Study 17 (1982) 13–27.

    MATH  MathSciNet  Google Scholar 

  • R.S. Womersley, “Minimizing nonsmooth composite functions,” Centre for Mathematical Analysis Report CMA-R12-84, Australian National University (1984).

  • R.S. Womersley, “Local properties of algorithms for minimizing nonsmooth composite functions,”Mathematical Programming 32 (1985) 69–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Yuan, “An example of only linear convergence of trust region algorithms for nonsmooth optimization,”IMA Journal of Numerical Analysis 4 (1984) 327–335.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, S.J. Local properties of inexact methods for minimizing nonsmooth composite functions. Mathematical Programming 37, 232–252 (1987). https://doi.org/10.1007/BF02591697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591697

Key words

Navigation