Skip to main content
Log in

Strong uniqueness

A far-reaching criterion for the convergence analysis of iterative procedures

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In the present work a common basis of convergence analysis is given for a large class of iterative procedures which we call general approximation methods. The concept of strong uniqueness is seen to play a fundamental role. The broad range of applications of this proposed classification will be made clear by means of examples from various areas of numerical mathematics. Included in this classification are methods for solving systems of equations, the Remes algorithm, methods for nonlinear Chebyshev-approximation, the classical Newton method along with its variants such as Newton's method for partially ordered spaces and for degenerate tangent spaces. As an example of the latter the approximation with exponential sums having coalescing frequencies is discussed, that is the case where the tangent space is degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Práger, M., Vitásek, E.: Numerical processes in differential equations. Prague: SNTL 1966

    Google Scholar 

  2. Braess, D.: Approximation mit Exponentialsummen. Computing2, 309–321 (1967)

    Google Scholar 

  3. Braess, D.: Über die Vorzeichenstruktur der Exponentialsummen. J. Approximation Theory3, 101–113 (1970)

    Google Scholar 

  4. Braess, D.: Die Konstruktion der Tschebyscheff-Approximierenden bei der Anpassung mit Exponentialsummen. J. Approximation Theory3, 261–273 (1970)

    Google Scholar 

  5. Braess, D.: Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation. Math. Z.132, 327–341 (1973)

    Google Scholar 

  6. Braess, D.: Chebyshev approximation by γ-polynomials, II. J. Approximation Theory11, 16–37 (1974)

    Google Scholar 

  7. Chartres, B., Stepleman, R.: A general theory of convergence for numerical methods. SIAM J. Numer. Anal.9, 476–492 (1972)

    Google Scholar 

  8. Cheney, E.W.: Introduction to approximation theory. New York: McGraw-Hill 1966

    Google Scholar 

  9. Collatz, L.: Funktionalanalysis und numerische Mathematik. Berlin-Heidelberg-New York: Springer 1968

    Google Scholar 

  10. Cromme, L.: Eine Klasse von Verfahren zur Ermittlung bester nichtlinearer Tschebyscheff-Approximationen. Numer. Math.25, 447–459 (1976)

    Google Scholar 

  11. Cromme, L.: Bemerkungen zur numerischen Behandlung nichtlinearer Aufgaben der Tschebyscheff-Approximation. In: Numerische Methoden der Approximationstheorie, Bd. III. Basel-Stuttgart: Birkhäuser 1976

    Google Scholar 

  12. Cromme, L.: Numerische Methoden zur Behandlung einiger Problemklassen der nichtlinearen Tschebyscheff-Approximation mit Nebenbedingungen. Numer. Math.28, 101–117 (1977)

    Google Scholar 

  13. Cromme, L.: Zur Tschebyscheff-Approximation bei Ungleichungsnebenbedingungen im Funktionenraum. In: Approximation Theory, Bonn (1976). Lecture Notes in Mathematics, Vol. 556. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  14. Cromme, L.: Approximation by exponential sums: Free and coalescing frequencies. In preparation

  15. Helferich, H.P.: Ein modifiziertes Newtonsches Verfahren. In: Funktionalanalytische Methoden der numerischen Mathematik, ISNM 12. Basel-Stuttgart: Birkhäuser 1969

    Google Scholar 

  16. Hettich, R.: Kriterien zweiter Ordnung für lokal beste Approximationen. Numer. Math.22, 409–417 (1974)

    Google Scholar 

  17. Kantorowitsch, L.W., Akilow, G.P.: Funktionalanalysis in normierten Räumen. Berlin: Akademie-Verlag 1964

    Google Scholar 

  18. Nickel, K.: Über die Stabilität und Konvergenz numerischer Algorithmen I/II. Computing15, 291–309, 311–328 (1975)

    Google Scholar 

  19. Ortega, J.M., Rheinholdt, W.C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970

    Google Scholar 

  20. Schaback, R.: On alternation numbers in nonlinear Chebyshev-approximation. J. Approximation Theory (to appear)

  21. Schröder, J.: Über das Newtonsche Verfahren. Arch. Rational Mech. Anal.1, 154–180 (1957/58)

    Google Scholar 

  22. Veidinger, L.: On the numerical determination of the best approximations in the Chebyshev sense. Numer. Math.2, 99–105 (1960)

    Google Scholar 

  23. Werner, H.: Praktische Mathematik, Bd. I. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cromme, L. Strong uniqueness. Numer. Math. 29, 179–193 (1978). https://doi.org/10.1007/BF01390337

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390337

Keywords

Navigation