Skip to main content
Log in

Raman scattering as a probe of the superconducting proximity effect

  • Plenary and Invited Papers
  • Superconductivity
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Temperature-dependent Raman spectroscopy is used to investigate the effect of superconductivity on the near-surface electronic structure of a semiconductor in good electrical contact with a superconductor. The light scattering is performed through a high-quality thin (60–100Å) film of Nb, grown directly ontoin-situ Ar+-etched (100)-n+InAs. Below Tc, the LO mode, associated with the surface charge accumulation layer in the InAs, is enhanced by ∼40% in comparison with the nearby L_bulk phonon mode. This change, reversible upon temperature cycling, is observed only when the Nb is in good electrical contact with the InAs. Preliminary results show a similar effect on NbN/InAs. Our results constitute the first optical detection of the superconducting proximity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Deutcher and P. G. deGennes inSuperconductivity, R.D. Parks, ed. (Marcel Dekker, NY, 1969) p1005.

    Google Scholar 

  2. Fei Zhou, B. Spivak and A. Zyuzin, Phys. Rev. B52, 4467 (1995).

    Article  ADS  Google Scholar 

  3. I. G. A. Devyatov and M. Yu. Kupriyanov, JETP Lett.59, 200 (1994).

    ADS  Google Scholar 

  4. For review, see A. W. Kleinsasser and W. J. Gallagher inSuperconducting Devices, D. Rudmann and S. Ruggiero, eds., (Academic Press, Boston, 1989) p.325; and T. M. Klapwijk, Physica B197, 481 (1994).

    Google Scholar 

  5. For example, see B. G. Streetman,Solid State Electronic Devices (Prentice Hall, Englewood Cliffs, NJ, 1990).

    Google Scholar 

  6. J. F. Dorsten, J. E. Maslar, and P. W. Bohn, Appl. Phys. Lett.66, 1755 (1995).

    Article  ADS  Google Scholar 

  7. L. A. Farrow, C. J. Sandroff, and M. C. Tamargo, Appl. Phys. Lett51, 1931 (1987).

    Article  ADS  Google Scholar 

  8. J. E. Maslar, J. F. Dorsten, P. W. Bohn, S. Agarwala, I. Adesida, C. Caneau, and R. Bhat, J. Vac. Sci. Tech. B13, 988 (1995).

    Article  Google Scholar 

  9. J. Geurts, Surf. Sci. Rep.18, 5 (1993).

    Article  Google Scholar 

  10. B. Boudart, B. Prevot, and C. Schwab, Appl. Surf. Sci.50, 295 (1991).

    Article  ADS  Google Scholar 

  11. P. D. Wang, M. A. Foad, C. M. Sotomayor-Torres, S. Thoms, M. Watt, R. Cheung, C. D. W. Wilkinson, and S. P. Beaumont, J. Appl. Phys.71, 3754 (1992).

    Article  ADS  Google Scholar 

  12. M. Holtz, R. Zallen, O. Brafman, and S. Matteson, Phys. Rev. B37, 4609 (1988).

    Article  ADS  Google Scholar 

  13. A. Mlayah, R. Carles, G. Landa, E. Bedel, and A. Munoz-Yague, J. Appl. Phys.69, 4064 (1991).

    Article  ADS  Google Scholar 

  14. A. Pinczuk, J. M. Worlock, H. L. Stormer, A. C. Gossard, W. Wiegmann, J. Vac. Sci. Tech.19, 561 (1981).

    Article  ADS  Google Scholar 

  15. J. S. Kim, D. G. Seiler, and W. F. Tseng, J. Appl. Phys.73, 8324 (1993).

    Article  Google Scholar 

  16. J. F. Dorsten, T. A. Tanzer, P. W. Bohn, A. C. Abeyta, I.V. Roshchin, and L. H. Greene, preprint.

  17. L. H. Greene, A. Abeyta, I. V. Roshchin, I. K. Robinson, J. F. Dorsten, T. A. Tanzer and P. W. Bohn in “Spectroscopic Studies of Superconductors”, Ivan Bozovic and Drik van der Marel, eds. SPIE Vol.2696, (SPIE, Bellingham, WA, 1996) p215.

    Google Scholar 

  18. L. H. Greene, J. F. Dorsten, I. V. Roshchin, A. C. Abeyta, T. A. Tanzer, W. L. Feldmann and P. W. Bohn, Czechoslovak Journal of Physics46, Suppl. S2, 741 (1996).

    Article  Google Scholar 

  19. A. F. Andreev, Sov. Phys JETP19, 1228 (1964). [J. Exptl. Theoret. Phys. (U.S.S.R.)].

    Google Scholar 

  20. A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P. Milliken, and J. B. Harbison, Phys. Rev. Lett.67, 3026 (1991).

    Article  ADS  Google Scholar 

  21. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B25, 4515 (1982).

    Article  ADS  Google Scholar 

  22. T. M. Klapwijk, G. E. Blonder, M. Tinkham, Physica B+C109–110, 1657 (1982).

    Google Scholar 

  23. A. W. Kleinsasser, T. N. Jackson, D. McInturff, F. Rammo, G. D. Pettit and J. M. Woodall, Appl. Phys. Lett.57, 1811 (1990).

    Article  ADS  Google Scholar 

  24. F. E. Aspen and A. M. Goldman, J. Low Temp. Phys.43, 559 (1981).

    Article  ADS  Google Scholar 

  25. M. Kadin and A. M. Goldman, Phys. Rev. B25, 6701 (1982).

    Article  ADS  Google Scholar 

  26. B. J. van Wees, P. de Vries, P. Magnée, and T. M. Klapwijk, Phys. Rev. Lett.69, 510 (1992).

    Article  ADS  Google Scholar 

  27. I. K. Marmorkos, C. W. J. Beenakker, and R. A. Jalabert, Phys. Rev. B48 2811 (1993).

    Article  ADS  Google Scholar 

  28. H. Takayanagi and T. Kawakami, Phys. Rev. Lett.54, 2449 (1985).

    Article  ADS  Google Scholar 

  29. K. Inoue and H. Takayanagi, Phys Rev. B.43, 6214 (1991).

    Article  ADS  Google Scholar 

  30. J. Nitta, T. Akazaki, H. Takayanagi, and K. Arai, Phys. Rev. B46, 14,286 (1992).

    Article  Google Scholar 

  31. H. Takayanagi, J. B. Hansen and J. Nitta, Phys. Rev. Lett.74, 162 (1995).

    Article  ADS  Google Scholar 

  32. C. Nguyen, J. Werking, H. Kroemer, and E. L. Hu, Appl. Phys. Lett.57, 87 (1990).

    Article  ADS  Google Scholar 

  33. C. Nguyen, H. Kroemer, and E. L. Hu, Phys. Rev. Lett.69, 2847 (1992).

    Article  ADS  Google Scholar 

  34. S. Buchner and E. Burstein, Phys. Rev. Lett.33, 908 (1974).

    Article  Google Scholar 

  35. M. Noguchi, K. Hirakawa, and T. Ikoma, Phys. Rev. Lett.66, 2243 (1991).

    Article  ADS  Google Scholar 

  36. C. K. N. Patel and R. E. Slusher, Phys Rev, Lett.167, 413 (1968).

    ADS  Google Scholar 

  37. Y. B. Li, I. T. Ferguson, R. A. Stradling, and R. Zaalen, Semicond. Science. and Technol.7, 1149 (1992).

    Article  ADS  Google Scholar 

  38. D. Olego and M. Cardona, Phys. Rev. B,24, 7217 (1981).

    Article  ADS  Google Scholar 

  39. H. Shen, F. Pollak, and R. N. Sacks, SPIE Proc.524, 145 (1985).

    Google Scholar 

  40. P. Corden, A. Pinczuk, and E. Burstein, Proc. 10th Intl. Conf. Phys. Semicond., S.P. Keller, J.C. Hensel, F. Stern, eds., 739 (1970).

  41. L. Y. Ching, E. Burstein, S. Buchner, and H. H. Wieder, J. Phys. Soc. Jpn49, 951 (1980).

    Google Scholar 

  42. A. Pinczuk, private communications.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Support acknowledged by: The Department of Energy through the Materials Research Laboratory # DE-FG02-91-ER45439

Support acknowledged by: The Office of Naval Research #N00014-93-1-1168.

Support acknowledged by: The Fannie and John Hertz Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, L.H., Dorsten, J.F., Roshchin, I.V. et al. Raman scattering as a probe of the superconducting proximity effect. Czech J Phys 46 (Suppl 6), 3115–3122 (1996). https://doi.org/10.1007/BF02548118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548118

Keywords

Navigation