Skip to main content
Log in

Crystallization and melting of spin-polarized3He

  • Plenary and Invited Papers
  • Quantum Fluids and Solids
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The melting and growth of3He crystals, spin-polarized by an external magnetic field, are different in nature depending on whether the temperature is higher or lower than the characteristic ordering temperatures in the crystal (the Neel temperatureT N ) and in the liquid (the superfluid transition temperatureT c ). In the high-temperature region (T≥T N ,T c ) the liquid which appears upon melting has a high nonequilibrium spin density. In the low-temperature region (T≪T N ,T c ) the melting and growth are accompanied by spin supercurrents both in the liquid and in the crystal in addition to mass supercurrents in the liquid. The crystallization waves at the liquid-solid interface should exist in the low-temperature region. With increasing magnetic field the waves change in nature, because the spin currents begin to play a dominant role. The wave spectrum becomes linear with a velocity inversely proportional to the magnetic field. The attenuation of the waves at low enough temperatures is mainly due to the interaction of the moving crystal-liquid interface with thermal spin waves in the crystal. The waves could be weakly damped at temperatures below a few hundreds microkelvins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Andreev and A.Y. Parshin, Sov. Phys. JETP 48 (1978) 763.

    ADS  Google Scholar 

  2. K.O. Keshishev, A.Y. Parshin and A. Babkin, JETP Lett. 30 (1979) 56.

    ADS  Google Scholar 

  3. B. Castaing and P. Nozieres, J. Phys. (Paris) 40 (1979) 257.

    Google Scholar 

  4. M. Chapelier, G. Frossati and F.B. Rasmussen, Phys. Rev. Lett. 42 (1979) 904.

    Article  ADS  Google Scholar 

  5. G. Schumacher, D. Thoulouze, B. Castaing, Y. Chabre, P. Segransan and J. Joffrin, J. Phys. Lett. (Paris) 40 (1979) 143.

    Google Scholar 

  6. G.A. Vermeulen, S.A.J. Wiegers, C.C. Kranenburg, R. Jochemsen, and G. Frossati, Can. J. Phys. 65 (1987) 1560.

    ADS  Google Scholar 

  7. D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990) p. 394.

    Google Scholar 

  8. W.F. Brinkman and M.C. Cross, in: Progress in Low Temperature Physics, ed. D.F. Brewer, Vol. 7A (North-Holland, Amsterdam, 1978) p. 106.

    Google Scholar 

  9. D.D. Osheroff, M.C. Cross and D.S. Fisher, Phys. Rev. Lett. 44 (1980) 792.

    Article  ADS  Google Scholar 

  10. A.F. Andreev and V.I. Marchenko, Sov. Phys. Usp. 23 (1980) 21.

    Article  ADS  Google Scholar 

  11. A.F. Andreev, in: Progress in Low Temperature Physics, ed. D.F. Brewer, Vol. 8 (North-Holland, Amsterdam, 1982) p. 67.

    Google Scholar 

  12. A.F. Andreev and V.G. Knizhnik, Sov. Phys. JETP 56 (1982) 226.

    Google Scholar 

  13. R.M. Bowley and D.O. Edwards, J. Phys. (Paris) 44 (1983) 723.

    Google Scholar 

  14. R. Nomura, H.H. Hensley, T. Matsushita, and T. Mizusaki, JLTP 94 (1994) 377.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, A.F. Crystallization and melting of spin-polarized3He. Czech J Phys 46 (Suppl 6), 3043–3047 (1996). https://doi.org/10.1007/BF02548108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548108

Keywords

Navigation