Skip to main content
Log in

Ultrastructural observations on the calcification of human dental pulp

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The calcifications in dental pulp appeared to consist of discrete, smooth-surfaced laminated denticles and irregularly shaped, non-laminated denticles, together with a diffuse calcification characterized by small foci scattered throughout the fibrous pulp matrix. Calcification appeared to be initiated in relation to the interfibrillar matrix, collagen fibres and connective tissue cells. In each case the inorganic phases showed a distinct morphology; electron diffraction suggested hydroxyapatite. Both the laminated and non-laminated denticles had an organic matrix consisting of collagen fibres together with a background of electron dense material between the fibres. The laminated denticles appeared to grow by the addition of layers of collagen to the surface, leaving an uncalcified border zone which gradually calcified. The matrix of the non-laminated denticles was formed by the collagen fibres orientated in the long axis of the pulp, and no border zone was present. These denticles grew by the addition of mineral to the adjacent matrix fibres. Some small denticles did not have a collagen fibre matrix, but an electron-dense granular matrix was present. One such denticle was being resorbed by a giant multi-nucleated cell. The non-laminated denticles contained areas devoid of fibrils in which the crystallites were larger but gave a diffraction pattern indicative of hydroxyapatite. Between the matrix fibres in diffuse calcification an electron dense granular material was present.

Résumé

Les calcifications de la pulpe dentaire semblaient constituer par de petits pulpolithes lamellaires, à surfaces lisses, par des pulpolithes non lamellaires, à contours irréguliers, ainsi que par une calcification diffuse, constituée de petits foyers disséminés dans la matrice fibreuse pulpaire. La calcification semble débuter au niveau de la matrice interfibrillaire, du collagène et des cellules conjonctives. Dans chaque cas, les phases inorganiques ont un aspect morphologique distinct: la diffraction électronique semble indiquer la présence d’hydroxyleapatite. Les 2 types de pulpolithes ont une matrice organique constituée de collagène et d’un matériel dense aux électrons, situé entre les fibres. Les pulpolithes lamellaires semblent s’accroitre par adjonction de couches de collagène à leur surface, laissant subsister un rebord non calcifié, que se calcifie progressivement. La matrice des pulpolithes non lamellaires est formée de fibres de collagène orientées le long de l’axe de la pulpe et aucun rebord n’est visible. Ces pulpolithes s’accroissent par dépôt de minéral aux fibres de la matrice adjacente. Certains petits pulpolithes n’ont pas de matrice collagénique, mais une matrice granulaire dense aux électrons. Un de ces pulpolithes est résorbé par une cellule géante multinucléée. Les pulpolithes non-lamellaires présentent des zones afibrillaires où les cristaux sont plus larges et donnent des clichés de diffraction électronique d’hydroxyleapatite. Entre les fibres de la matrice des calcifications diffuses, un matériel granulaire dense est visible.

Zusammenfassung

Die Verkalkungen in Zahnpulpa scheinen zu bestehen aus: getrennten, lamellenförmigen Dentikeln mit glatter Oberfläche und unregelmäßig geformten, nicht-lamellenförmigen Dentikeln, zusammen mit einer diffusen Verkalkung, welche durch kleine Foci charakterisiert ist, die in der ganzen fibrösen Pulpamatrix verteilt sind. Die Verkalkung schien durch die inter-fibrilläre Matrix, die Kollagenfasern und die Bindegewebszellen hervorgerufen zu werden. Bei jedem Fall zeigten die anorganischen Phasen eine ausgeprägte Morphologie; die Elektronendiffraktion deutete auf Hydroxyapatit. Lamellenförmige und nicht-lamellenförmige Dentikel besaßen eine organische Matrix, welche aus Kollagenfasern und elektronendichtem Material zwischen den Fasern bestand. Die lamellenförmigen Dentikel schienen zu wachsen, indem sie Kollagenschichten auf der Oberfläche anfügten, wobei eine Randzone zuerst unverkalkt blieb und dann allmählich verkalkte. Die Matrix der nicht-lamellenförmigen Dentikel wurde durch die Kollagenfasern der Längsachse der Pulpa gebildet, und eine Randzone war nicht vorhanden. Diese Dentikel wuchsen, indem den angrenzenden Matrixfasern Mineral zugefügt wurde. Einige kleine Dentikel wiesen keine Kollagenfaser-Matrix auf, aber eine elektronendichte granuläre Matrix wurde festgestellt. Ein solcher Dentikel wurde von einer vielkernigen Riesenzelle resorbiert. Die nicht-lamellenförmigen Dentikel enthielten Zonen ohne Fibrillen, in welchen die Kriställchen größer waren, aber ein Diffraktionsmuster zeigten, welches auf Hydroxyapatit hindeutete. Zwischen den Matrixfasern in der diffusen Verkalkung wurde ein elektronendichtes granuläres Material festgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleton, J.: The fine structure of the condylar cartilage of the rat mandible. Ph. D. Thesis, University of London 1969.

  • Blakey, P. D., Lockwood, P.: The environment of calcified components in keratins. Calc. Tiss. Res.2, 361–369 (1958).

    Article  Google Scholar 

  • Bonucci, E.: Fine structure of early cartilage calcification. J. Ultrastruct. Res.20, 33–50 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Bonucci, E.: Further investigation on the organic/inorganic relationships in calcifying cartilage. Calc. Tiss. Res.3, 38–54 (1969).

    Article  CAS  Google Scholar 

  • Boothroyd, B.: The problem of demineralization of thin sections of fully calcified bone. J. Cell Biol.20, 165–173 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Brain, E. B.: The preparation of decalcified sections. Springfield, Illinois: Thomas 1966.

    Google Scholar 

  • Burstone, M. S.: The ground substance of abnormal dentine, secondary dentine, and pulp calcifications. J. dent. Res.32, 269–279 (1953).

    PubMed  CAS  Google Scholar 

  • Cameron, D. A.: The fine structure of bone and calcified cartilage. Clin. Orthop.26, 199–228 (1963).

    PubMed  CAS  Google Scholar 

  • Eisenstein, R., Trueheart, R. E., Hass, G. M.: Pathogenesis of abnormal tissue calcification. In: Calcification in biological systems (Reidar F. Sognnaes, ed.). Publication No 64 of the American Association for the Advancement of Science, Washington, D. C. 1960.

  • Fitton-Jackson, S.: The structure of developing bone in the embryonic fowl. Proc. roy. Soc. B146, 270–280 (1957).

    Article  Google Scholar 

  • Fitton-Jackson, S., Randall, J. T.: Fibrogenesis and the formation of matrix in developing bone. In: Bone structure and metabolism (G. E. W. Wolstenholme, C. M. O’Connor, eds.). Boston, Little, Brown & Company 1956.

    Google Scholar 

  • Gerstner, R.: Tissue cultures of pulpal elements. Oral Surg.32, 473–486 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Glimcher, M. J.: The role of the macromolecular aggregation state and reactivity of collagen in calcification. In: Macromolecular complexes (M. V. Edds, ed.. New York: The Ronald Press Co. 1961.

    Google Scholar 

  • Glimcher, M. J.: Organic matrices in mineralization. In: Calcification in biological systems (Reidar F. Sognnaes, ed.). Publication No 64 of the American Association for the Advancement of Science Washington, D. C. 1960.

  • Glimcher, M. J., Krane, S. M.: The organisation and structure of bone, and the mechanism of calcification. In: Treatise on collagen, vol. 2, part B. (Bernhard S. Gould, ed.). London and New York: Acad. Press 1968.

    Google Scholar 

  • Greenwalt, J. W., Rossi, C. S., Lehninger, A. L.: Effect of active accumulation of calcium and phosphate ions on the structure of the rat liver mitochondria. J. Cell Biol.23, 21–38 (1964).

    Article  Google Scholar 

  • Hall, D. C.: Pulpal calcifications—a pathological process? In: Dentine and pulp: Their structure and function (N. B. B. Symons, ed.). Symposium at the Dental School, University of Dundee, Edinburgh-London: E. & S. Livingstone 1968.

    Google Scholar 

  • Hall, T. A., Höhling, H. J., Bonucci, E.: Electron probe X-ray analysis of osmiophilic globules as possible sites of early mineralization in cartilage. Nature (Lond.)231, 535–536 (1971).

    Article  CAS  Google Scholar 

  • Hancox, N. M., Boothroyd, B.: Structure—function relationship in the osteoclast. In: Mechanisms of hard tissue destruction (Reidar F. Sognnaes, ed.). American Association for the Advancement of Science Washington D. C. 1963.

  • Harrop, T. J., Mackay, B.: Electron microscopic observations on healing dental pulp in the rat. Arch. oral Biol.13, 365–385 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Hayek, E., Newesley, H., Hassenteufel, W., Krismer, B.: Bildungsweise und Morphologie der schwerlöslichen Calciumphosphate. Mschr. Chemie91, 249–262 (1960).

    Article  CAS  Google Scholar 

  • Höhling, H. J., Themann, H., Vahl, J.: Collagen and apatite in hard tissues and pathological formations from a crystal/chemical point of view. In: Calcified tissues, Proceedings of the Third European Symposium on Calcified Tissues. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • James, V. E.: Early pulpal calcifications of permanent teeth of young individuals. J. dent. Res.37, 973 (1958) Abstract.

    Google Scholar 

  • Johnson, P. L., Bevelander, G.: Histogenesis and histochemistry of pulpal calcification. J. dent. Res.35, 714–722 (1956).

    PubMed  CAS  Google Scholar 

  • Kraus, B. S., Jordan, R. E., Abrams, L.: Dental anatomy and occlusion: a study of the masticatory system. Baltimore: William & Wilkins 1969.

    Google Scholar 

  • Langeland, L.: Tissue changes in the dental pulp. An experimental histological study. Odont.65, 239–386 (1957).

    Google Scholar 

  • Legato, M. J., Spiro, D., Langer, G. A.: Ultrastructural alterations produced in mammalian myocardium by variation in perfusate ionic composition. J. Cell Biol.37, 1–12 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Matthews, J. L., Martin, J. H., Lynn, J. A., Collins, E. J.: Calcium incorporation in the developing cartilagenous epiphysis. Calc. Tiss. Res.1, 330–336 (1968).

    Article  CAS  Google Scholar 

  • Miles, A. E. W.: Ageing in the teeth and oral tissues. In: Structural aspects of agein (G. Bourne, ed.) London: Pitman 1961.

    Google Scholar 

  • Molnar, Z.: Development of the parietal bone of young mice. I. Crystals of bone mineral in frozen dried preparations. J. Ultrastruct. Res.3, 39–45 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Neuman, W. F., Neuman, M. W.: The chemical dynamics of bone mineral. Chicago: Chicago Univ. Press 1958.

    Google Scholar 

  • Okada, H.: Histochemical studies of experimental heterotopic calcification induced by potassium permanganate in the pulp of the mandibular incisor of rabbits. J. dent. Res.49, 1458–1568 (1970).

    PubMed  CAS  Google Scholar 

  • Orban, B.: Oral histology and embryology (Haryy Sicher, ed.). 6th ed. St. Louis: C. V. Mosby Company 1966.

    Google Scholar 

  • Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med.95, 285–298 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Robinson, R. A., Watson, M. L.: Crystal collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. N.Y. Acad. Sci.60, 596–628 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, D. D., Bensch, K., Barnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol.17, 19–58 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Saxton, C. A.: Identification of otacalcium phosphate in human dental calculus by electron diffraction. Arch. oral Biol.13, 243–246 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W. J., Keil, A.: Polarizing microscopy of dental tissues. Theory, method and results from the structural analysis of normal and diseased hard dental tissues and tissues associated with them in man and other vertebrates. Oxford: Pergamon Press 1971.

    Google Scholar 

  • Schroeder, H. E.: Crystal morphology and gross structure of mineralizing plaque and of calculus. Helv. odont. Acta9, 73–86 (1965).

    CAS  Google Scholar 

  • Scott, H. S., Symons, N. B. B.: Introduction to dental anatomy, 6th ed. Edinburgh and London: E. & S. Livingstone Ltd. 1970.

    Google Scholar 

  • Selzer, S., Bender, I. B.: The dental pulp. Biological considerations in dental procedures. Philadelphia and Montreal: J. B. Lippincott & Company 1965.

    Google Scholar 

  • Taves, D. R.: Mechanisms of calcification. Clin. Orthop.42, 207–220 (1965).

    PubMed  CAS  Google Scholar 

  • Weber, J. C., Eanes, E. E., Gerdes, R. J.: Electron microscope study of non-crystalline calcium phosphate. Arch. Biochem. Biophys.120, 723–724 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appleton, J., Williams, M.J.R. Ultrastructural observations on the calcification of human dental pulp. Calc. Tis Res. 11, 222–237 (1973). https://doi.org/10.1007/BF02547221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547221

Key words

Navigation