Skip to main content
Log in

Phospholpid studies of marine organisms: 2.1 Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)2. Isolation and structure elucidation of unprecedented branched fatty acids

  • Published:
Lipids

Abstract

The free sterols and phospholipids of the demospongeAplysina fistularis were isolated and analyzed. The free sterols consisted mainly of the unusual 26-methylated sterols aplysterol (53%) and 24(28)-dehydroaplysterol (7%) together with 7 commonly occurring sterods. The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine and diphosphatidylglycerol. The major fatty acyl components of the phospholipids consisted of 85% C14−C20 acids, including the unprecedented 2,6,10-trimethyl-5-tetradecenoic acid and 11-methyloctadecanoic acid. The remaining 15% were C27−C30 demospongic acids, including 2 novel acids tentatively assigned the structures 5,9,23-octacosatrienoic acid and 5,9,23-nonacosatrienoic acid, and 3 novel acids proven to be 5,9,21-octacosatrienoic acid, Z,Z-20-methyl-5,9-hexacosadienoic acid and Z,Z-22-methyl-5,9-octacosadienoic acid. The biosyntheses of the novel demospongic acids are proposed to occur by chain elongation of monoenoic or branched precursors followed by desaturation. The large quantities of typically bacterial phospholipids and fatty acids found implied the presence of bacteria in the sponge, in agreement with microscopic studies. Analysis of the phospholipid-bound fatty acids in a sponge cell-enriched fraction indicated that the demospongic acids, including the 2 branched structures, were the major acids of the sponge cells. The presence inA. fistularis of demospongic acids containing membrane disordering groups—methyl branches or double bonds—on the ω7 carbon is proposed to be due to the need by the sponge for membranes possessing fluidity near the middle of the phospholipid bilayer. It is also proposed that the C26 methyl group of aplysterol causes disordering of the phospholipid bilayer in the same region, and thus also evolved in response to this need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PC:

phosphatidylcholine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PE:

phosphatidylethanolamine

PS:

phosphatidylserine

DPG:

diphosphatidylglycerol

BHT:

butylated hydroxytoluene

References

  1. Harel, Z., and Djerassi, C. (1980) Lipids 15, 694–696.

    Article  PubMed  CAS  Google Scholar 

  2. Berquist, P.R. (1980), N.Z. J. Zool. 7, 443–503.

    Google Scholar 

  3. Djerassi, C., Theobald, N., Kokke, W.C.M.C., Pak, C.S., and Carlson, R.M.K. (1979) Pure Appl. Chem. 51, 1815–1828.

    CAS  Google Scholar 

  4. Djerassi, C. (1981) Pure Appl. Chem. in press.

  5. Goad, L.J. (1978) in Marine Natural Products: Chemical and Biological Perspectives (Scheuer, P.J., ed.) Vol. II, pp. 75–172, Academic Press, New York, NY.

    Google Scholar 

  6. Sjostrand, U., and Bohlin, L. (1981) in Handbook of Marine Science (Baker, J.T., and Murphy, V., eds.) Vol. 3, CRC Press, Cleveland, OH, in press.

    Google Scholar 

  7. Carlson, R.M.K., Tarchini, C., and Djerassi, C. (1980) in Frontiers of Bioorganic Chemistry and Molecular Biology (Ananchenko, S.N., ed.) pp. 211–224, Pergamon Press, New York, NY.

    Google Scholar 

  8. Bloch, K. (1981) in Membranes and Transport, Plenum Press, New York, NY, in press.

    Google Scholar 

  9. Suckling, K.E., Blair, H.A.F., Boyd, G.S., Craig, I.F., and Malcolm, B.R. (1979) Biochim. Biophys. Acta 551, 10–21.

    Article  PubMed  CAS  Google Scholar 

  10. De Rosa, M., Minale, L., and Sodano, G. (1973) Comp. Biochem. Physiol. 46B, 823–837.

    Google Scholar 

  11. Nelson, G.J. (1975) in Analysis of Lipids and Lipoproteins (Perkins, E.G., ed.) pp. 1–22, American Oil Chemists' Society, Champaign, IL.

    Google Scholar 

  12. Privett, O.S., Dougherty, K.A., Erdahl, W.L., and Stolyhwo, A. (1973) J. Am. Oil Chem. Soc. 50, 516–520.

    PubMed  CAS  Google Scholar 

  13. Idler, D.R., and Safe, L.M. (1972) Steroids 19, 315–324.

    Article  PubMed  CAS  Google Scholar 

  14. Skipski, V.P., and Barclay, M. (1969) Methods Enzymol. 14, 530–598.

    CAS  Google Scholar 

  15. Kates, M. (1972) in Laboratory Techniques in Biochemistry and Molecular Biology (Work, T.S., and Work, E., eds.) Vol. 3, pt. II, pp. 347–353, North-Holland, New York, NY.

    Google Scholar 

  16. Skipski, V.P., Peterson, R.F., and Barclay, M. (1964) Biochem. J. 90, 374–378.

    PubMed  CAS  Google Scholar 

  17. Barlett, G.R. (1959) J. Biol. Chem. 234, 466–468.

    Google Scholar 

  18. Carreau, J.P., and Dubacq, J.P. (1978) J. Chrom. 151, 384–390.

    Article  CAS  Google Scholar 

  19. Ackman, R.G. (1972) Prog. Chem. Fats Other Lipids 12, 167–284.

    Article  Google Scholar 

  20. Andersson, B.A. (1978) Prog. Chem. Fats Other Lipids 16, 279–308.

    Article  PubMed  CAS  Google Scholar 

  21. Hill, E.E., Husbands, D.R., and Lands, W.E.M. (1968) J. Biol. Chem. 243, 4440–4451.

    PubMed  CAS  Google Scholar 

  22. Stein, R.A., and Nicolaides, N. (1962) J. Lipid Res. 3, 476–478.

    CAS  Google Scholar 

  23. Corey, E.J., Gilman, N.W., and Ganem, B.E. (1968) J. Am. Chem. Soc. 90, 5616–5617.

    Article  CAS  Google Scholar 

  24. Place, P., Roumestant, M.-L., and Gore, J. (1976) Bull. Soc. Chim. Fr. 169–176.

  25. Gokhale, P.D., Dalavoy, V.S., Prakasa Rao, A.S.O., Nayak, U.R., and Dev, S. (1974) Synthesis 718–719.

  26. Ratcliffe, R., and Rodehurst, R. (1970) J. Org. Chem. 35, 4000–4002.

    Article  Google Scholar 

  27. Morrison, W.R., and Smith, L.M. (1964) J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  28. Weibel, E.R. (1969) Int. Rev. Cytol. 26, 235–302.

    Article  PubMed  CAS  Google Scholar 

  29. Fischmeister, I. (1963) Arkiv. Kemi 20, 353–367.

    CAS  Google Scholar 

  30. Ghosh, D., Williams, M.A., and Tinoco, J. (1973) Biochim. Biophys. Acta 291, 351–362.

    Article  PubMed  CAS  Google Scholar 

  31. Boon, J.J., de Leeuw, J.W., Hoek, G.J. v.d., and Vosjan, J.M. (1977) J. Bacteriol. 129, 1183–1191.

    PubMed  CAS  Google Scholar 

  32. Frost, D.J., and Gunstone, F.D. (1975) Chem. Phys. Lipids 15, 53–85.

    Article  PubMed  CAS  Google Scholar 

  33. Dyer, J.R. (1965) in Applications of Absorption Spectroscopy of Organic Compounds, p. 99, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  34. Dyer, J.R. (1965) in Applications of Absorption Spectroscopy of Organic Compounds, pp. 30–31, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  35. Berquist, P.R., Hofheinz, W., and Oesterhelt, G. (1980) Biochem. Syst. Ecol. 8, 423–435.

    Article  Google Scholar 

  36. Joseph, J.D. (1979) Prog. Lipid Res. 18, 1–30.

    Article  PubMed  CAS  Google Scholar 

  37. Lehinger, A.L. (1975) Biochemistry, 2nd ed., p. 674, Worth Publishers, New York, NY.

    Google Scholar 

  38. Kates, M. (1964) Adv. Lipid Res. 2, 17–90.

    PubMed  CAS  Google Scholar 

  39. Salton, M.R.J. (1971) Biomembranes 1, 1–65.

    Google Scholar 

  40. Sara, M., and Vacelet, J. (1973) Trait. Zool. T. III, F. 1, 462–576.

    Google Scholar 

  41. Vacelet, J. (1975) J. Micros. Biol. Cell. 23, 271–288.

    Google Scholar 

  42. Morris, R.J., and Culkin F. (1976) Oceanogr. Mar. Biol. Ann. Rev. 14, 391–433.

    CAS  Google Scholar 

  43. Kaneda, T. (1977) Bacteriol. Rev. 41, 391–418.

    PubMed  CAS  Google Scholar 

  44. Lennarz, W.J. (1966) Adv. Lipid Res. 4, 175–225.

    PubMed  CAS  Google Scholar 

  45. Campbell, I.M., and Naworal, J. (1969) J. Lipid Res. 10, 593–598.

    PubMed  CAS  Google Scholar 

  46. Egge, H., Murawski, U., Chatranon, W., and Zilliken, F. (1971). Z. Naturforsch. B. 26, 893–901.

    PubMed  CAS  Google Scholar 

  47. Ballio, A., and Barcellona, S. (1971) Gazz. Chim. Ita. 101, 635–636.

    CAS  Google Scholar 

  48. Ackman, R.G., and Hooper, S.N. (1968) Comp. Biochem. Physiol. 24, 549–565.

    Article  PubMed  CAS  Google Scholar 

  49. Schlenk, H. (1972) Fed. Proc. 31, 1430–1435.

    PubMed  CAS  Google Scholar 

  50. Madrigal, R.V., and Smith, C.R. (1975) Lipids 10, 502–504.

    Article  PubMed  CAS  Google Scholar 

  51. Litchfield, C., Greenberg, A.J., Noto, G., and Morales, R.W. (1976) Lipids 11, 567–570.

    PubMed  CAS  Google Scholar 

  52. Sargent, J.R. (1976) in Biochemical and Biophysical Perspectives in Marine Biology (Malins, D.C., and Sargent, J.R., eds.) Vol. 3, pp. 149–212, Academic Press, New York, NY.

    Google Scholar 

  53. Litchfield, C., Tyszkiewicz, J., and Dato, V. (1980) Lipids 15, 200–202.

    CAS  Google Scholar 

  54. Morales, R.W., and Litchfield, C. (1976) Biochim. Biophys. Acta 431, 206–216.

    PubMed  CAS  Google Scholar 

  55. Litchfield, C., and Marcantonio, E.E. (1978) Lipids 13, 199–202.

    Article  CAS  Google Scholar 

  56. Morales, R.W., and Litchfield, C. (1977) Lipids 12, 570–576.

    Article  CAS  Google Scholar 

  57. Silvius, J.R., and McElhaney, R.N. (1980) Chem. Phys. Lipids 26, 67–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For part 1, see ref. 1.

Phylum porifera, class demospongia, subclass ceractinomorpha, order verongida, family aplysinidae (2). Formerly known asVerongia thiona de Laubenfels.

Major diagnostic fragments from peak 23:M+ 471 (2.9%); m/z 442 (C26, 0.2%); m/z 428 (C25, 0.2%); m/z 414 (C24, 0.1%); m/z 400 (C23, 0.3%); (absence of C22 peak); m/z 374 (C21, 0.2%); m/z 360 (C20, 0.2%); m/z 234 (C11, 1.0%); m/z 220 (C10, 0.7%); m/z 206 (C9, 0.5%); m/z 194 (C8, 0.4%); m/z 180 (C7, 24.9%); m/z 166 (C6, 1.2%); m/z 152 (C5, 0.8%); m/z 140 (C4, 1.3%); m/z 126 (C3, 18.7%).

Major diagnostic fragments from peak 25:M+ 485 (0.9%); m/z 456 (C27, 0.1%); (absence of C26, C25 peaks); m/z 414 (C24, 0.3%); m/z 400 (C23, 0.1%); m/z 402 (C23, 0.1%); (absence of C22 peak); m/z 374 (C21, 0.1%); m/z 360 (C20, 0.1%); m/z 234 (C11, 0.5%); m/z 220 (C10, 0.3%); m/z 206 (C9, 0.1%); m/z 194 (C8, 0.2%); m/z 180 (C7, 18.0%); m/z 166 (C6); m/z 152 (C5), m/z 140 (C4); m/z 126 (C3, 15.0%).

About this article

Cite this article

Walkup, R.D., Jamieson, G.C., Ratcliff, M.R. et al. Phospholpid studies of marine organisms: 2.1 Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)2. Isolation and structure elucidation of unprecedented branched fatty acids. Lipids 16, 631–646 (1981). https://doi.org/10.1007/BF02535058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535058

Keywords

Navigation