Skip to main content
Log in

Fatty Acid, Lipid Class, and Phospholipid Molecular Species Composition of the Soft Coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam)

  • Original Article
  • Published:
Lipids

Abstract

The soft corals of the genus Xenia are common for Indo-Pacific reef ecosystems. Lipid class, fatty acid (FA), phospho- and phosphonolipid molecular species compositions were identified for the first time in the soft coral Xenia sp. from Vietnam. Total lipids consisted predominantly of waxes, monoalkyl diacylglycerols, triacylglycerols, sterols, and polar lipids (21.4, 7.7, 14.2, 10.5, and 36.7 %, respectively). Sesquiterpene alcohol, valerenenol, was found. Acids 16:0, 18:3n-6, 20:4n-6, and 20:5n-3 dominated in total FA. The markers of zooxanthellae (18:4n-3 and 18:5n-3) and octocorals (24:5n-6 and 24:6n-3) were detected. Acids 18:5n-3, 20:4n-6, 22:4n-6, and 24:5n-6 concentrated in FA of polar lipids, whereas 14:0, 16:0, 16:1n-7, 18:2n-6, and 18:3n-6 were the major FA of neutral lipids. ChoGpl, EtnGpl, SerGpl, CAEP, PtdIns, and lyso ChoGpl constituted 39.5, 20.8, 20.5, 9.7, 4.3, and 5.3 %, respectively, of the sum of phospho- and phosphonolipids. Thirty-two molecular species of phospholipids and ceramide aminoethylphosphonate (CAEP) were determined by high resolution tandem mass spectrometry. Lyso 18:0e PakCho (4.1 %), 18:0e/20:4 PakCho (20.5 %), 18:1e/20:4 PlsEtn (18.0 %), 18:0e/24:5 PakSer (14.0 %), and 16:0 CAEP (9.6 %) were the major molecular species. EtnGpl and PtdIns mainly consisted of alkenyl acyl and diacyl forms, respectively. Alkyl acyl forms predominated in ChoGpl and SerGpl. Acid 24:5n-6 was a principal FA in SerGpl, whereas 20:4n-6 was more abundant in ChoGpl and EtnGpl. PtdIns contained various C20–24 PUFA. In the context of chemotaxonomy of corals, Xenia sp. has the lipid composition typical for soft corals and the FA profile similar to that of alcyonarians with the high level of 18:3n-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

CAEP:

Ceramide aminoethylphosphonate

ChoGpl:

Choline glycerophospholipids

DMA:

Dimethylacetals

DMOX4:

4-Dimethyloxazoline

ESI:

Electrospray ionization

EtnGpl:

Ethanolamine glycerophospholipids

FA:

Fatty acids

FAME:

Fatty acid methyl esters

FFA:

Free fatty acids

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

HRMS:

High resolution mass spectrometry

HPLC–HRMS:

High performance liquid chromatography–high resolution mass spectrometry

lyso ChoGpl:

Lyso choline glycerophospholipids

MADAG:

Monoalkyl diacylglycerols

NL:

Neutral lipids

NMR:

Nuclear magnetic resonance

PakCho:

1-O-Alkyl-2-acyl-sn-glycero-3-phosphocholine

PakEtn:

1-O-Alkyl-2-acyl-sn-glycero-3-phosphoethanolamine

PCA:

Principal components analysis

PL,:

Phospholipids

PlsCho:

Choline plasmalogen

PlsEtn:

Ethanolamine plasmalogen

PoL:

Polar lipids

PtdCho:

Phosphatidylcholine

PtdEtn,:

Phosphatidylethanolamine

PtdIns:

Phosphatidylinositol

PtdSer:

Phosphatidylserine

PUFA:

Polyunsaturated fatty acids

SerGpl:

Serine glycerophospholipids

ST:

Sterols

TAG:

Triacylglycerols

TL:

Total lipids

TLC:

Thin-layer chromatography

WE:

Wax esters

References

  1. Dinesen ZD (1983) Patterns in the distribution of soft corals across the Central Great Barrier Reef. Coral Reefs 1:229–236

    Article  Google Scholar 

  2. Mergner H, Schuhmacher H (1981) Quantitative analysis of the coral community of a fore reef area near Aqaba (Red Sea). Helgoländer Meeresunters 34:337–354

    Article  Google Scholar 

  3. Tursch B, Tursch A (1982) The soft coral community on a sheltered reef quadrat at Laing Island (Papua New Guinea). Mar Biol 68:321–332

    Article  Google Scholar 

  4. Hanaa HA, Fathia Mannaa, Selim FE (2006) Modulatory effect of the red soft coral extracts on hepatotoxicity induced by carcinogenic agents in rat model. J Egypt Soc Toxicol 35:97–107

    Google Scholar 

  5. Hanson JR (2009) Diterpenoids. Nat Prod Rep 26:1156–1171

    Article  CAS  PubMed  Google Scholar 

  6. Imbs AB (2013) Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol 39:153–168

    Article  CAS  Google Scholar 

  7. Imbs AB, Latyshev NA, Dautova TN, Latypov YY (2010) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  8. Al-Sofyani AA, Niaz GR (2007) A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev Biol Mar Oceanogr 42:207–219

    Article  Google Scholar 

  9. WoRMS Editorial Board (2014) World Register of Marine Species. http://www.marinespecies.org at VLIZ. Accessed Aug 2014

  10. Harland AD, Navarro JC, Davies PS, Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, was esters, triglycerides and fatty acids. Mar Biol 117:113–117

    Article  CAS  Google Scholar 

  11. Yamashiro H, Oku H, Higa H, Chinen I, Sakai K (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol B 122:397–407

    Article  Google Scholar 

  12. Seemann J, Sawall Y, Auel H, Richter C (2013) The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids 48:275–286

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues LJ, Grottoli AG, Pease TK (2008) Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii. J Exp Mar Biol Ecol 358:136–143

    Article  CAS  Google Scholar 

  14. Meyers PA (1979) Polyunsaturated fatty acids in coral: indicators of nutritional sources. Mar Biol Lett 1:69–75

    CAS  Google Scholar 

  15. Saunders SM, Radford B, Bourke SA, Thiele Z, Bech T, Mardon J (2005) A rapid method for determining lipid fraction ratios of hard corals under varying sediment and light regimes. Environ Chem 2:331–336

    Article  CAS  Google Scholar 

  16. Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85

    Google Scholar 

  17. Yamashiro H, Oku H, Onaga K, Iwasaki H, Takara K (2001) Coral tumors store reduced level of lipids. J Exp Mar Biol Ecol 265:171–179

    Article  CAS  Google Scholar 

  18. Teece MA, Estes B, Gelsleichter E, Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol Oceanogr 56:1285–1296

    Article  CAS  Google Scholar 

  19. Chen W-NU, Kang H-J, Weis VM, Mayfield AB, Jiang P-L, Fang L-S, Chen C-S (2012) Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31:521–534

    Article  Google Scholar 

  20. Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101:76–82

    Article  CAS  PubMed  Google Scholar 

  21. Yamashiro H, Oku H, Onaga K (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fish Sci 71:448–453

    Article  CAS  Google Scholar 

  22. Imbs AB, Yakovleva IM (2012) Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs 31:41–53

    Article  Google Scholar 

  23. Ezzat L, Merle P-L, Furla P, Buttler A, Ferrier-Pages C (2013) The response of the Mediterranean gorgonian Eunicella singularis to thermal stress is independent of its nutritional regime. PLoS One 8:e64370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ward S (1995) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. Coral Reefs 14:87–90

    Article  Google Scholar 

  25. Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311

    Article  CAS  PubMed  Google Scholar 

  26. Imbs AB, Demidkova DA, Latypov YY, Pham LQ (2007) Application of fatty acids for chemotaxonomy of reef-building corals. Lipids 42:1035–1046

    Article  CAS  PubMed  Google Scholar 

  27. Imbs AB, Dautova TN (2008) Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcyonaria). Russ J Mar Biol 34:174–178

    Article  CAS  Google Scholar 

  28. Folch JF, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  29. Hamoutene D, Puestow T, Miller-Banoub J, Wareham V (2008) Main lipid classes in some species of deep-sea corals in the Newfoundland and Labrador region (Northwest Atlantic Ocean). Coral Reefs 27:237–246

    Article  Google Scholar 

  30. Rouser G, Kritchevsky G, Yamamoto A (1976) Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids. In: Marinetty G (ed) Lipid chromatographic analysis. Marcel Dekker, New York

    Google Scholar 

  31. Khotimchenko SV, Kulikova IV (2000) Lipids of different parts of the lamina of Laminaria japonica Aresch. Bot Mar 43:87–91

    CAS  Google Scholar 

  32. Vaskovsky VE, Kostetsky EY, Vasendin IM (1974) A universal reagent for phospholipids analysis. J Chromatogr 114:129–141

    Article  Google Scholar 

  33. Svetashev VI (2011) Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC–MS. Lipids 46:463–467

    Article  CAS  PubMed  Google Scholar 

  34. Christie WW (1988) Equivalent chain lengths of methyl ester derivatives of fatty acids on gas chromatography—a reappraisal. J Chromatogr 447:305–314

    Article  CAS  Google Scholar 

  35. The AOCS Lipid Library (2014) Mass spectrometry of fatty acid derivatives. http://lipidlibrary.aocs.org/ms/masspec.html. Accessed Aug 2014

  36. Harrabi S, Herchi W, Kallel H, Mayer PM, Boukhchina S (2009) Liquid chromatographic–mass spectrometric analysis of glycerophospholipids in corn oil. Food Chem 114:712–716

    Article  CAS  Google Scholar 

  37. Boukhchina S, Sebai K, Cherif A, Kallel H, Mayer PM (2004) Identification of glycerophospholipids in rapeseed, olive, almond, and sunflower oils by LC–MS and LC–MS–MS. Can J Chem 82:1210–1215

    Article  CAS  Google Scholar 

  38. Tori M, Ikawa M, Sagawa T, Furuta H, Sono M, Asakawa Y (1996) Synthesis of isovalerenenol, a sesquiterpene alcohol from a soft coral and the stability of related hydrindanone derivatives. Tetrahedron 52:9999–10010

    Article  CAS  Google Scholar 

  39. Spitzer V (1997) Structure analysis of fatty acids by gas chromatography–low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives—a review. Prog Lipid Res 35:387–408

    Article  Google Scholar 

  40. de Souza LM, Iacomini M, Gorin PAJ, Sari RS, Haddad MA, Sassaki GL (2007) Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem Phys Lipids 145:85–96

    Article  PubMed  Google Scholar 

  41. Joseph JD (1979) Lipid composition of marine and estuarine invertebrates: Porifera and cnidarian. Prog Lipid Res 18:1–30

    Article  CAS  PubMed  Google Scholar 

  42. Strychar KB, Coates M, Sammarco PW, Piva TJ, Scott PT (2005) Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. J Exp Mar Biol Ecol 320:159–177

    Article  Google Scholar 

  43. Kobayashi M, Yasuzawa T, Kyogoku Y, Kido M, Kitagawa I (1982) Three new ent-valerenane sesquiterpenes from an Okinawa soft coral. Chem Pharm Bull 30:3431–3434

    Article  CAS  Google Scholar 

  44. Lam NC, Nguyen KH, Stekhov VB, Svetashev VI (1981) Phospholipids and fatty acids of gorgonian corals. Russ J Mar Biol 7:366–369

    Google Scholar 

  45. Latyshev NA, Nguen KH, To TN, Svetashev VI (1986) Composition and seasonal fluctuations of alcyonarian phospholipids. Russ J Mar Biol 12:178–182

    Google Scholar 

  46. Carballeira NM, Miranda C, Rodriguez AD (2002) Phospholipid fatty acid composition of Gorgonia mariae and Gorgonia ventalina. Comp Biochem Physiol B 131:83–87

    Article  PubMed  Google Scholar 

  47. Imbs AB, Demina OA, Demidkova DA (2006) Lipid class and fatty acid composition of the boreal soft coral Gersemia rubiformis. Lipids 41:721–725

    Article  CAS  PubMed  Google Scholar 

  48. Mukhamedova KS, Glushenkova AI (2000) Natural phosphonolipids. Chem Nat Comp 36:329–341

    Article  CAS  Google Scholar 

  49. Patton JS, Abraham S, Benson AA (1977) Lipogenesis in the intact coral Pocillopora capicata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar Biol 44:235–247

    Article  CAS  Google Scholar 

  50. Imbs AB, Yakovleva IM, Pham LQ (2010) Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fish Sci 76:375–380

    Article  CAS  Google Scholar 

  51. Awai K, Matsuoka R, Shioi Y (2012) Lipid and fatty acid compositions of Symbiodinium strains. In: Proceedings of the 12th International Coral Reef Symposium

  52. Svetashev VI, Vysotskii MV (1998) Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates. Comp Biochem Physiol B 119:73–75

    Article  Google Scholar 

  53. Imbs AB (2014) Lipid class and fatty acid compositions of the zoanthid Palythoa caesia (Anthozoa: Hexacorallia: Zoanthidea) and its chemotaxonomic relations with corals. Biochem Syst Ecol 54:213–218

    Article  CAS  Google Scholar 

  54. Nichols PD, Danaher KT, Koslow JA (2003) Occurrence of high levels of tetracosahexaenoic acid in the jellyfish Aurelia sp. Lipids 38:1207–1210

    Article  CAS  PubMed  Google Scholar 

  55. Imbs AB, Demidkova DA, Dautova TN, Latyshev NA (2009) Fatty acid biomarkers of symbionts and unusual inhibition of tetracosapolyenoic acid biosynthesis in corals (Octocorallia). Lipids 44:325–335

    Article  CAS  PubMed  Google Scholar 

  56. Chen W-NU, Kang H-J, Weis VM, Mayfield AB, Jiang P-L, Fang L-S, Chen C-S (2012) Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31:521–534

    Article  Google Scholar 

  57. Bishop DG, Kenrick JR (1980) Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15:799–804

    Article  CAS  Google Scholar 

  58. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231 59. Chen S, Belikova NA, Subbaiah PV (2012) Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry. Anal Chim Acta 735:76–89

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant 14–04–93002), Vietnamese Academy of Science and Technology (Grants VAST.HTQT.NGA.06/13–14 and VAST.HTQT.NGA.09/14–15), and the Russian Academy of Science (project “Far East” VANT–005). We are grateful to Dr. Tatyana N. Makarieva (PIBOC FEB RAS) for NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey B. Imbs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 53 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbs, A.B., Dang, L.P.T., Rybin, V.G. et al. Fatty Acid, Lipid Class, and Phospholipid Molecular Species Composition of the Soft Coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam). Lipids 50, 575–589 (2015). https://doi.org/10.1007/s11745-015-4021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4021-0

Keywords

Navigation