Skip to main content
Log in

Utilization of l-serine in the in vivo biosynthesis of glycerophospholipids by rat liver

  • Published:
Lipids

Abstract

The incorporation of L-serine-U-14C, L-serine-3-14C, and D,L-serine-1-14C into the glycerophospholipids of rat liver in vivo was determined over a period of 3 min to 13 hr following intravenous injection. The radioactivity from these serines was transferred to variable extent into the glycerol, fatty acid, and nitrogenous base parts of all the glycerophospholipids and neutral lipids. The half-lives and turnover rates of phosphatidylserine calculated from the precursor-product specific activity curves obtained with L-serine-U-14C were 14 min and 0.28 μmol/min/liver, respectively. The half-lives and turnover rates of phosphatidylserine as measured from the decay data of lipid serine from all markers averaged, respectively, 8.2 hr and 0.008 μmol/min/liver. The discrepancy between these turnover rates was attributed to an underestimation of degradation of phosphatidylserine due to its continued biosynthesis and/or an extensive reutilization of L-serine. By monitoring the formation of radioactive lipid ethanolamine, it was found that phosphatidylserine was decarboxylated at one-half the rate of lipid serine biosynthesis. It is suggested that as much as one-half of total phosphatidylserine may be degraded by other mechanisms, such as base exchange with choline, ethanolamine, and serine, as already demonstrated in vitro by other workers. The time course and nature of labeling of phosphatidylcholine was consistent with an extensive conversion of radioactive L-serine to 1-carbon fragments and a rapid methylation of phosphatidylethanolamine to phosphatidylcholine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borkenhagen, L.F., E.P. Kennedy, and L. Fielding, J. Biol. Chem. 236:PC28 (1961).

    Google Scholar 

  2. Dennis, E.A., and E.P. Kennedy, J. Lipid Res. 13:263 (1972).

    PubMed  CAS  Google Scholar 

  3. Bremer, J., P.H. Figard, and D.M. Greenberg, Biochim. Biophys Acta 43:477 (1960).

    Article  CAS  Google Scholar 

  4. Bremer, J., and D.M. Greenberg, Ibid. 46:205 (1961).

    Article  CAS  Google Scholar 

  5. Weinhold, P.A., and R.D. Sanders, Biochemistry 10:1090 (1971).

    Article  PubMed  CAS  Google Scholar 

  6. Marggraf, W.D., and F.A. Anderer, Hoppe-Seyler’s Z. Physiol. Chem. 355:1299 (1974).

    PubMed  CAS  Google Scholar 

  7. Diringer, H., Ibid. 354:577 (1973).

    PubMed  CAS  Google Scholar 

  8. Bjerve, K.S., Biochim. Biophys. Acta 306:396 (1973).

    PubMed  CAS  Google Scholar 

  9. Spitzer, H.L., Fed. Proc. Fed. Am. Soc. Exp. Biol. 31:454 Abstr. (1972).

    Google Scholar 

  10. Wise, E.M., Jr., and D. Elwyn, J. Biol. Chem. 240:1537 (1965).

    PubMed  CAS  Google Scholar 

  11. Kuksis, A., J.J. Myher, L. Marai, S.K.F. Yeung, I. Steiman, and S. Mookerjea, Can. J. Biochem. 53:509 (1975).

    Article  PubMed  CAS  Google Scholar 

  12. Sundler, R., Biochim. Biophys. Acta 306:218 (1973).

    PubMed  CAS  Google Scholar 

  13. Lee, T., N. Stephens, A. Moehl, and F. Snyder, Ibid. 291:86 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. Folch, J., M. Lees, and G.H. Sloane-Stanley, J. Biol. Chem. 226:497 (1957).

    PubMed  CAS  Google Scholar 

  15. Skipski, V.P., R.F. Peterson, and M. Barclay, Biochem. J. 90:374 (1964).

    PubMed  CAS  Google Scholar 

  16. Arvidson, G.A.E., Eur. J. Biochem. 4:478 (1968).

    Article  PubMed  CAS  Google Scholar 

  17. Rouser, G., A.N. Siakotos, and S. Fleischer, Lipids 1:85 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. Renkonen, O., Ibid. 1:160 (1966).

    Article  CAS  PubMed  Google Scholar 

  19. Gornall, D.A., A. Kuksis, and N. Morley, Biochim. Biophys. Acta 280:225 (1972).

    PubMed  CAS  Google Scholar 

  20. Yeung, S.K.F., and A. Kuksis, Can. J. Biochem. 52:830 (1974).

    Article  PubMed  CAS  Google Scholar 

  21. Holub, B.J., W.C. Breckenridge, and A. Kuksis, Lipids 6:307 (1971).

    Article  CAS  Google Scholar 

  22. Stein, W.H., and S. Moore, J. Biol. Chem. 211:915 (1954).

    PubMed  CAS  Google Scholar 

  23. Spackman, D.H., W.H. Stein, and S. Moore, Anal. Chem. 30:1190 (1958).

    Article  CAS  Google Scholar 

  24. Zilversmit, D.B., C. Entenman, and M.C. Fisher, J. Gen. Physiol. 26:325 (1943).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, J.D., K.D. Gibson, and S. Udenfriend, J. Biol. Chem. 235:3539 (1966).

    Google Scholar 

  26. Sundler, R., G. Arvidson, and B. Akesson, Biochim. Biophys. Acta 280:559 (1972).

    PubMed  CAS  Google Scholar 

  27. Sundler, R., and B. Akesson, Biochem. J. 146:309 (1975).

    PubMed  CAS  Google Scholar 

  28. Björnstad, P., and J. Bremer, J. Lipid Res. 7:38 (1966).

    PubMed  Google Scholar 

  29. Collins, F.D., and V.L. Shotlander, Biochem. J. 79:316 (1961).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yeung, K.K.F., Kuksis, A. Utilization of l-serine in the in vivo biosynthesis of glycerophospholipids by rat liver. Lipids 11, 498–505 (1976). https://doi.org/10.1007/BF02532893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532893

Keywords

Navigation