Skip to main content
Log in

Bacteria—A link among ecosystem constituents

  • Special Feature 2
  • Published:
Researches on Population Ecology

Abstract

Microbial ecology has undergone a revolution over the past two decades due to the numerous innovations in techniques, allowing bacteria to be detected more accurately by direct means. Thus, bacterial life can be distinguishedin situ by direct counting under epifluorescence microscopy; automatically counting and sizing by image analyzer equipped with epifluorescence microscopy or by use of flow cytometry; specific radioisotope techniques; and molecular techniques to detect specific taxa. All of these approaches do not require cultivation, which provides a biased view of bacterial communities in nature. Bacteria are abundant in aquatic environments and play important roles as links between dissolved nutrients and the grazers in the food web. The new techniques allow an evaluation of bacterial population dynamics and function in relation to other organisms of higher trophic levels. This mini review aims to show briefly the state-of-the-art in microbial ecology for ecologists concerned with organisms other than microbes, in order to develop further intensive study together with microbial ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, J. (1984) Relevance of r- and K-theory to the ecology of plant pathogens. pp. 136–43.In M. J. Klug and C. A. Reddy (eds.)Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Azam, F. and R. E. Hodson (1981) Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria.Marine Ecology Progress Series 6: 213–222

    CAS  Google Scholar 

  • Azam, F., B. C. Cho, D. C. Smith and M. Simon (1981) Bacterial cycling of matter in the pelagic zone of aquatic ecosystems. pp. 477–488.In M. M. Tilzer and C. Serruya (eds.)Large lakes: ecological structure and function. Springer, Berlin.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad (1983) The ecological role of water-column microbes in the sea.Marine Ecology Progress Series 10: 257–263.

    Google Scholar 

  • Berman, T. and C. Gerber (1980) Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret.Microbial Ecology 6: 189–198.

    Article  Google Scholar 

  • Bergh, O., K. Y. Børheim, G. Bratbak and M. Heldal (1989) High abundance of viruses found in aquatic environments.Nature 340: 467–468.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. K. Haq and L. M. Palmer (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms.Biotechnology 3: 817–820.

    Article  Google Scholar 

  • DeLong, E. F., D. G. Franks and A. L. Aldrege (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages.Limnology and Oceanography 38: 924–934.

    Google Scholar 

  • DeLong, E. F., G. S. Wickmam and N. R. Pace (1989) Phylogenetic stains: ribossomal RNA-based probes for the identification of single microbial cells.Science 243: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Derenbach, J. B. and P. J. B. Williams (1974) Autotrophic and bacterial production: fractionation of plankton populations by differential filtration of samples from the English Channel.Marine Biology 25: 263–269.

    Article  Google Scholar 

  • Ducklow, H. W. (1983) Production and fate of bacteria in the oceans.BioScience 33: 494–499.

    Article  Google Scholar 

  • Ducklow, H. W. and S. M. Hill (1985) The growth of heterotrophic bacteria in the surface waters of warm core rings.Limnology and Oceanography 30: 239–259.

    Google Scholar 

  • Fenchel, T. (1982) Ecology of heterothrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers.Marine Ecology Progress Series 9: 35–42.

    Google Scholar 

  • Ferguson, R. L. and P. Rublee (1976) Contribution of bacteria to standing crop of coastal plankton.Limnology and Oceanography 21: 141–145.

    Google Scholar 

  • Fletcher, M. and S. McEldowney (1984) Microbial attachment to nonbiological surfaces. pp. 136–43.In M. J. Klug and C. A. Reddy (eds.)Current perspectives in microbial ecology, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Fuhrman, J. A. and F. Azam (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California.Applied and Environmental Microbiology 39: 1085–1095.

    PubMed  Google Scholar 

  • Fuhrman, J. A. and G. B. McManus (1984) Do bacteria-sized marine eukaryotes consume significant bacterial production?Science 224: 1257–1260.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A. and Noble, R. T. (1995) Viruses and protists cause similar bacterial mortality in coastal seawater.Limnology and Oceanography 40: 1236–1242.

    Article  Google Scholar 

  • Güde, H. (1979) Grazing by protozoa as selection factor for activated sludge bacteria.Microbial Ecology 5: 225–237.

    Article  Google Scholar 

  • Hattori, T. (1973)Microbial life in the soil. Marcel Decker, New York.

    Google Scholar 

  • Hobbie, J. E. and C. C. Crawford (1969) Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters.Limnology and Oceanography 14: 528–532.

    CAS  Google Scholar 

  • Hobbie, J. E., R. J. Daley and S. Jasper (1977) Use of nuclepore filter for counting bacteria by fluorescence microscopy.Applied and Environmental Microbiology 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Jarvis, A. C. and R. C. Hart (1993) Determining in situ bacterial filtration roles by zooplankton; improvement to [methyl-3H]thymidine labelling technique.Journal of Plankton Research 15: 27–294.

    Google Scholar 

  • Kato, K. (1989) Planktonic bacterial strategy in aquatic ecosystem: free-living vs. attached. pp. 373–377.In T. Hattori, Y. Ishida, Y. Maruyama, R. Morita and A. Uchida (eds.)Recent avances in microbial ecology. Japan Scientific Press, Tokyo.

    Google Scholar 

  • Kato, K. and M. Sakamoto (1979) Vertical distribution of carbohydrate utilizing bacteria in Lake Kizaki.Japanese Journal of Limnology 40: 211–214.

    CAS  Google Scholar 

  • Kato, K. and H.-H. Stabel (1984) Studies on the carbon flux from phyto- to bacterioplankton communities in Lake Constance.Archiev fur Hydrobiologie 102: 177–192.

    CAS  Google Scholar 

  • Kato, K., S. W. Oh, H. Yamamoto, T. Hanazato, I. Yasuda, A. Otuki and M. Takahashi (1992) Enclosure experiment on the control mechanism of planktonic bacterial standing stock.Ecological Research 7: 267–276.

    Article  Google Scholar 

  • Lampert, W. (1978) Release of dissolved organic carbon by grazing zooplankton.Limnology and Oceanography 23: 831–834.

    Article  CAS  Google Scholar 

  • Liston, J. (1968) Distribution, taxonomy and function of heterothrophic bacteria on the sea floor.Bulletin of Misaki Marine Biological Institute, Tokyo University 12: 97–104.

    Google Scholar 

  • Nalewajko, C. and D. W. Schindler (1976) Primary production, extracellular release, and heterotrophy in two lakes in the ELA, Northern Ontario.Journal of Fishery Research Board Canada 33: 219–226.

    Google Scholar 

  • Oh, S. (1987)Seasonal changes of periphyton and bacteria in littoral zone of Lake Suwa. Master thesis, Shinshu University.

  • Pace, M. L., K. G. Porter and Y. S. Feig (1983) species and age-specific differences in bacterial resource utilization by two co-occurring cladocersans.Ecology 64: 1145–1156.

    Article  Google Scholar 

  • Palmer, F. E., Methot, Jr. and T. Staley (1976) Patchiness in the distribution of planktonic heterothrophic bacteria in lakes.Applied and Environmental Microbiology 31: 1003–1005.

    PubMed  Google Scholar 

  • Pedrós-Alió, C. and T. D. Brock (1983) The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake.Freshwater Biology 13: 227–239.

    Article  Google Scholar 

  • Porter, K. G. and Y. S. Feig (1980) The use of DAPI for identifying and counting aquatic microflora.Limnology and Oceanography 25: 943–948.

    Google Scholar 

  • Porter, K. G., Y. S. Feig and E. F. Vetter (1983) Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria.Oecologia 58: 1145–1156.

    Article  Google Scholar 

  • Porter, K. G., M. L. Pace and J. F. Battey (1979) Ciliate protozoans as links in freshwater planktonic food chains.Nature 277: 563–565.

    Article  Google Scholar 

  • Proctor, L. M. and J. A. Fuhrman (1990) Viral mortality of marine bacteria and cyanobacteria.Nature 343: 60–62.

    Article  Google Scholar 

  • Razmov, A. S. (1947) Method of microbiological studies of water. MOSCOW. VODGEO. [cited in Y. I. Sorokin and H. Kadota (eds.) (1972)Techniques for the assesment of microbial production and decomposition in fresh waters. IBP Handbook No. 23. Blackwell Scientific Publications, London]

    Google Scholar 

  • Sherr, E. B. and B. F. Sherr (1983) Enumeration of heterotrophic microprotozoa by epifluorescene microscopy.Estuarine Coastal Shelf Science 16: 1–7.

    Article  Google Scholar 

  • Sota, T. and K. Kato (1994) Bacteria as diet for the mosquito larvaeAedes (Stegomyia) (Diptera: Culicidae): preliminary experiment withPseudomonas fluorescence.Applied Entomology and Zoology 29: 598–600.

    Google Scholar 

  • Starkweather, P. L., J. J. Gilbert and T. M. Frost (1979) Bacterial feeding by the rotiferBrachionus calyciflorus: clearance and ingestion rates, behaviour and population dynamics.Oecologia 44: 26–30.

    Article  Google Scholar 

  • Steemann-Nielsen, E. (1952) The use of radioactive carbon (C14) for measuring organic production in the sea.Conseil Permanent International pour l'Exploration de la Mer, Journal du Conseil 18: 117–140.

    Google Scholar 

  • Stolp, H. (1988)Microbial ecology: organisms, habitats, activities. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tóth, L. G. and K. Kato (1996) Development ofEudiaptomus japonicus Burckhardt (Copepoda, Calanoida) reared on different sized fractions of natural plankton.Journal of Plankton Research 18: 819–834.

    Google Scholar 

  • Van Es and L. Meyer-Reil (1982) Biomass and metabolic activity of heterothrophic marine bacteria.Advances in Mirobial Ecology 6: 111–170.

    Google Scholar 

  • Wolter, K. (1982) Bacterial incorporation of organic material from cells of phytoplankton populations.Marine Ecology Progress Series 7: 287–295.

    Google Scholar 

  • Wright, R. T. and R. B. Coffin (1984) Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production.Microbial Ecology 10: 137–49.

    Article  Google Scholar 

  • Wright, R. T. and J. E. Hobbie (1965) The uptake of organic solutes in lake water.Ecology 47: 447–464.

    Article  Google Scholar 

  • Zimmermann, R. and L. A. Meyer-Reil (1974) A new method for fluorescence staining of bacterial populations on membrane filters.Kieler Meeresforschung 30: 24–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, K. Bacteria—A link among ecosystem constituents. Res Popul Ecol 38, 185–190 (1996). https://doi.org/10.1007/BF02515726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515726

Key words

Navigation