Skip to main content

Methods for Studying Microorganisms in the Environment

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

The main methods for the study of microorganisms in the environment (water, soil, sediment, biofilms), the different techniques of sampling for measuring biomass, the activities, and the diversity of the microorganisms are presented. To respond to these various issues, techniques as varied as those of flow cytometry, molecular biology, biochemistry, molecular isotopic tools, or electrochemistry are implemented. These different techniques are described with their advantages and disadvantages for different types of biotopes. The question of the isolation, culture, and conservation of microorganisms from the environment are also addressed. Without being exhaustive, this chapter emphasizes the importance of using appropriate and efficient methodological tools to properly explore the still mysterious compartment of microorganisms in the environment.

Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of substrates enriched in radioisotopes (such as 14C) is less often considered in molecular studies and is not considered in this chapter.

  2. 2.

    However, δ13C values of biogenic and thermogenic methane can exhibit a large range of variability.

References

  • Agogué H et al (2004) Comparison of samplers for the biological characterization of the air-seawater interface. Limnol Oceanogr Methods 2:213–225

    Google Scholar 

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Aminot A, Rey F (2002) Chlorophyll a determination by spectrometric methods. ICES Techn Mat Environ Sci 30:18p

    Google Scholar 

  • Andersson BA, Holman RT (1974) Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9:185–190

    CAS  PubMed  Google Scholar 

  • Aries E, Doumenq P, Artaud J, Acquaviva M, Bertrand J-C (2001) Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria. Org Geochem 32:891–903

    CAS  Google Scholar 

  • Arigon AM, Perriere G, Gouy M (2008) Automatic identification of large collections of protein-coding or rRNA sequences. Biochimie 90:609–614

    CAS  PubMed  Google Scholar 

  • Arístegui JG, Josep M, Duarte CM, Herndl G (2009) Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr 54:1501–1529

    Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane Y (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    CAS  PubMed  Google Scholar 

  • Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microbiol Ecol 16:73–84

    CAS  Google Scholar 

  • Bartlett DH, Lauro FM, Eloe EA (2007) Microbial adaptation to high pressure. In: Gerday C, Glandsdorf N (eds) Physiology and biochemistry of extremophiles. American Society for Microbiology Press, Washington, DC, pp 333–348

    Google Scholar 

  • Basso O, Lascourrèges JF, Jarry M, Magot M (2005) The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Microbiol 7:13–21

    PubMed  Google Scholar 

  • Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510

    CAS  Google Scholar 

  • Berry AE, Chiocchini C, Selby T, Sosio M, Wellington M (2003) Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol Lett 223:15–20

    CAS  PubMed  Google Scholar 

  • Bianchi A, Garcin J (1993) In stratified waters the metabolic rate of deep-sea bacteria decreases with decompression. Deep-Sea Res I 40:1703–1710

    CAS  Google Scholar 

  • Bianchi A, Garcin J, Tholosan O (1999) A high-pressure serial sampler to measure microbial activity in the deep sea. Deep-Sea Res 46:2129–2142, Part 1

    Google Scholar 

  • Bimet F (2007) Conservation des bactéries. Actualités permanentes en bactériologie clinique. Editions ESKA, Paris

    Google Scholar 

  • Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Org Geochem 39:1659–1667

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 35:911–917

    Google Scholar 

  • Bochdansky AB, van Aken HM, Herndl GJ (2010) Role of macroscopic particles in deep-sea oxygen consumption. Proc Natl Acad Sci U S A 107:8287–8291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    CAS  PubMed  Google Scholar 

  • Boschker HTS, Nold SC, Wellsburry P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805

    CAS  Google Scholar 

  • Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319

    Google Scholar 

  • Briand E, Pringault O, Jacquet S, Torréton J-P (2004) The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnol Oceanogr Methods 2:406–416

    Google Scholar 

  • Brodie EL et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bronk DA, Glibert P (1991) A 15N tracer method for the measurement of dissolved organic nitrogen release by phytoplankton. Mar Ecol Prog Ser 77:171–182

    CAS  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol Oceanogr 42:1570–1583

    CAS  Google Scholar 

  • Carrignan R, Blais A-M, Vis C (1998) Measurement of primary production and community respiration in oligotrophic lakes using Winkler method. Can J Fish Aquat Sci 55:1078–1084

    Google Scholar 

  • Cebron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce observed methanotroph diversity. Appl Environ Microbiol 73:798–807, Epub 2006 Nov 22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Certes A (1884) Sur la culture, à l’abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman. C R Acad Sci Paris 98:690–693

    Google Scholar 

  • Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–443

    CAS  Google Scholar 

  • Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristic of a diverse group of oligotrophic marine gammaproteobacteria. Appl Environ Microbiol 70:432–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturating microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalma-Weiszhausz DD, Warrington J, Tanimoto EY, Miyada CG (2006) The affymetrix GeneChip platform: an overview. Methods Enzymol 410:3–28

    CAS  PubMed  Google Scholar 

  • Davidson EA, Savage K, Verchot LV, Navarro R (2002a) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37

    Google Scholar 

  • Davidson K, Roberts EC, Gilpin AC (2002b) The relationship between carbon and biovolume in marine microbial mesocosm under different nutrient regimes. Eur J Phycol 37:501–507

    Google Scholar 

  • De Bruyn JC, Boogerd FC, Bos P, Gijs Kuenen J (1990) Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol 56:2891–2894

    PubMed Central  PubMed  Google Scholar 

  • Del Giorgio P, Cole J-J (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Google Scholar 

  • Deming JW (1985) Bacterial growth in deep-sea sediment trap and boxcore samples. Mar Ecol Prog Ser 25:305–312

    Google Scholar 

  • Deming JW, Tabor PS, Colwell RR (1980) Deep ocean microbiology. In: Diemer F, Vernberg J, Mirkes D (eds) Advanced concepts in Ocean Measurements for Marine Biology. University of South Carolina Press, Columbia, pp 285–305

    Google Scholar 

  • Denonfoux J, Parisot N, Dugat-Bony E, Biderre-Petit C, Boucher D, Morgavi DP et al (2013) Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 20:185–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devulder G, Perriere G, Baty F, Flandrois JP (2003) BIBI, a Bioinformatics Bacterial Identification Tool. J Clin Microbiol 41:1785–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dharmadi Y, Gonzalez R (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20:1309–1324

    CAS  PubMed  Google Scholar 

  • Dong Y, Glasner JD, Blattner FR, Triplett EW (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl Environ Microbiol 67:1911–1921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulfide-forming bacteria. J Gen Microbiol 132:1815–1825

    CAS  Google Scholar 

  • Dugat-Bony E, Missaoui M, Peyretaillade E, Biderre-Petit C, Bouzid O, Gouinaud C et al (2011) HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27:641–648

    CAS  PubMed  Google Scholar 

  • Dugat-Bony E, Biderre-Petit C, Jaziri F, David MM, Denonfoux J, Lyon DY et al (2012a) In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microb Biotechnol 5:642–653

    PubMed Central  PubMed  Google Scholar 

  • Dugat-Bony E, Peyretaillade E, Parisot N, Biderre-Petit C, Jaziri F, Hill D et al (2012b) Detecting unknown sequences with DNA microarrays: explorative probe design strategies. Environ Microbiol 14:356–371

    CAS  PubMed  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing – linking microbial identity to function. Nat Rev Microbiol 3:499–504

    CAS  PubMed  Google Scholar 

  • Ehrenreich A (2006) DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 73:255–273

    CAS  PubMed  Google Scholar 

  • Ericsson M, Hanstorp D, Hagberg P, Enger J, Nyström T (2000) Sorting out bacterial viability with optical tweezers. J Bacteriol 182:5551–5555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang J, Barcelona MJ, Abrajano T, Nogi Y, Kato C (2002) Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariane Trench at 11,000 m. Mar Chem 80:1–9

    CAS  Google Scholar 

  • Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422

    CAS  PubMed  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: Pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    CAS  PubMed  Google Scholar 

  • Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr 16:147–194

    Google Scholar 

  • Freeman KH, Wakeham SG, Hayes JM (1994) Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins. Org Geochem 21:629–644

    CAS  PubMed  Google Scholar 

  • Frostegård A et al (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed Central  PubMed  Google Scholar 

  • Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furhman JA (2000) Impact of viruses on bacterial processes. In: Kirchman DL (ed) Microbial of the Oceans. Wiley-Liss, New York, pp 351–386

    Google Scholar 

  • Furhman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Appl Environ Microbiol 39:1085–1095

    Google Scholar 

  • Gasol JM et al (2008) Towards a better understanding of microbial carbon flux in the sea. Aquat Microb Ecol 53:21–38

    Google Scholar 

  • Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72:257–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    CAS  PubMed  Google Scholar 

  • Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36:3755–3762

    CAS  PubMed  Google Scholar 

  • Godfroy A, Raven ND, Sharp RJ (2000) Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549. FEMS Microbiol Lett 186:127–132

    CAS  PubMed  Google Scholar 

  • Gordon HR, Brown OB, Evans RH, Brown JW, Smith KS, Baker KS, Clark DK (1988) A semi analytical radiance model of ocean color. J Geophys Res 93:10909–10924

    Google Scholar 

  • Goutx M, Wakeham SG, Lee C, Duflos M, Guigue C, Liu Z, Moriceau B, Sempéré R, Tedetti M, Xue J (2007) Composition and degradation of sinking particles with different settling velocities. Limnol Oceanogr 52:1645–1664

    Google Scholar 

  • Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A (2008) Metabolism of nalkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 39:1197–1203

    CAS  Google Scholar 

  • Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12:2020–2033

    CAS  PubMed  Google Scholar 

  • Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH4+ and NO2- oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62

    CAS  PubMed  Google Scholar 

  • Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittmann BE, Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn MW, Lünsdorf H, Wu Q, Schauer M, Hölfe MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson J, Macalday JL, Harris D, Scow KM (1999) Linking toluene degradation with specific microbial populations in soil. Appl Environ Microbiol 65:5403–5408

    CAS  PubMed Central  PubMed  Google Scholar 

  • He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4:1167–1179

    CAS  PubMed  Google Scholar 

  • Heckly RJ (1978) Bacterial culture preservation methods. Adv Appl Microbiol 24:1–53

    CAS  PubMed  Google Scholar 

  • Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051

    CAS  Google Scholar 

  • Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaea molecular- isotopic and phylogenetic evidence. Nature 398:802–805

    CAS  PubMed  Google Scholar 

  • Honjo S, Manganini SJ, Cole JJ (1982) Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res 29:609–625

    CAS  Google Scholar 

  • Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    CAS  Google Scholar 

  • Hoppe H-G (1991) Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chrøst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 60–83

    Google Scholar 

  • Horikoshi K (ed) (2011) Extremophiles handbook, vol 1. Springer, Tokyo

    Google Scholar 

  • Hubálek Z (2002) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Google Scholar 

  • Hug LA, Salehi M, Nuin P, Tillier ER, Edwards EA (2011) Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp. Appl Environ Microbiol 77:5361–5369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Annu Rev Microbiol 38:487–514

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO (1973) Deep-sea microorganisms: in situ response to nutrient enrichment. Science 180:641–643

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO (1977) Retrieval of concentrated and undecompressed microbial populations from the deep sea. Appl Environ Microbiol 33:642–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO (1984) Variability of pressure adaptation in deep sea bacteria. Arch Microbiol 139:281–288

    Google Scholar 

  • Jannasch HW, Eimhjellen K, Wirsen CO, Farmanfarmaian A (1971) Microbial degradation of organic matter in the deep sea. Science 171:672–675

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO, Winget CL (1973) A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep-Sea Res 20:661–664

    Google Scholar 

  • Jeffrey SW, Mantoura F, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. In: Jeffrey SW, Montana F, Wright SW (eds) Mongraphs on Oceanographic Methodology. UNESCO Pub, Paris

    Google Scholar 

  • Jeffrey SW, Mantoura F, Wright SW (2005) Phytoplankton pigments in oceanography: guidelines to modern methods. In: Jeffrey SW, Montana F, Wright SW (eds) Mongraphs on Oceanographic Methodology, 2nd edn. UNESCO Pub, Paris

    Google Scholar 

  • Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labeled cell lipids. Appl Environ Microbiol 68:6106–6113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnstone KI (1969) The isolation and cultivation of single organisms. In: Norris JR, Ribbons DW (eds) Methods in Microbiology, vol 1. Academic, New York, pp 455–471

    Google Scholar 

  • Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at the single cell level. Microbes Infect 2:1523–1535

    CAS  PubMed  Google Scholar 

  • Joux F, Servais P, Naudin J-J, Lebaron P, Oriol L, Courties C (2005) Distribution of picophytoplankton and bacterioplankton along a river plume gradient in the Mediterranean Sea. Vie Milieu 55:197–208

    Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    CAS  PubMed  Google Scholar 

  • Kato C (2011) Distribution of Piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 643–655

    Google Scholar 

  • Kato C et al (2008) Protein adaptation to high-pressure environments. In: Thomas T, Siddiqui KS (eds) Protein adaptation in extremophiles, Molecular anatomy and physiology of proteins series. Nova Science Publisher, Hauppauge, pp 167–191

    Google Scholar 

  • Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH (2011) Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J Microbiol Methods 84:52–60

    PubMed  Google Scholar 

  • Kirchman DL, K’ness E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klamer M, Bääth E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27:9–20

    CAS  Google Scholar 

  • Kreil DP, Russel RR, Russel S (2006) Microarray oligonucleotide probes. Methods Enzymol 410:73–98

    CAS  PubMed  Google Scholar 

  • Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J (1998) LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA:LNA duplexes. J Am Chem Soc 120:13252–13253

    CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lauro F, Bartlett D (2007) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    PubMed  Google Scholar 

  • Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH (2008) Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 90:1699–1709

    Google Scholar 

  • Lazazzera BA (2005) Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8:222–227

    CAS  PubMed  Google Scholar 

  • Lebaron P, Servais P, Agogué H, Courties C, Joux F (2001) Does the nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemarchand K, Parthuisot N, Catala P, Lebaron P (2001) Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water. Aquat Microb Ecol 25:301–309

    Google Scholar 

  • Lenaerts J, Lappin-Scott HM, Porter J (2007) Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl Environ Microbiol 73:2020–2023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liss PS, Duce RA (1997) The sea surface and global change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lohrenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res 13:223–227

    Google Scholar 

  • Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, DC, pp 21–33

    Google Scholar 

  • Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Casalot L, Cuny P, Tamburini C (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 8:e66580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzella N, Molinet J, Syakti AD, Barriol A, Dodi A, Bertand J-C, Doumenq P (2005) Effects of n-alkanes and crude oil on bacterial phospholipid classes and molecular species determined by electrospray ionization mass spectrometry. J Chromatogr B 822:40–53

    CAS  Google Scholar 

  • Migné A, Davoult D, Spilmont N, Menu D, Boucher G, Gattuso J-P, Rybarczyk H (2002) A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions. Mar Biol 140:865–869

    Google Scholar 

  • Militon C et al (2007) Phyl Array: phylogenetic probe design algorithm for microarray. Bioinformatics 23:2550–2557

    CAS  PubMed  Google Scholar 

  • Mitchell D, Willerslev E, Hansen A (2005) Damage and repair of ancient DNA. Mutat Res 571:265–276

    CAS  PubMed  Google Scholar 

  • Montserrat-Sala M, Arin L, Balagué V, Felipe J, Guadayol Ò, Vaqué D (2005) Functional diversity of bacterioplankton assemblages in western Antarctic seawaters during late spring. Mar Ecol Prog Ser 292:13–21

    Google Scholar 

  • Nagata T et al (2010) Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry and genomics. Deep Sea Res II 57:1519–1536

    CAS  Google Scholar 

  • Nelson CE, Carlson CA (2005) A nonradioactive assay of bacterial productivity optimized for oligotrophic pelagic environments. Limnol Oceanogr Methods 3:211–220

    CAS  Google Scholar 

  • Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007a) Methodological considerations for the application of stable isotope probing in microbial ecology. Microb Ecol 53:435–442

    CAS  PubMed  Google Scholar 

  • Neufeld JD, Wagner M, Murrell JC (2007b) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110

    CAS  PubMed  Google Scholar 

  • Neveux J, Lantoine F (1993) Spectrofluorometric assay for chlorophylls and phaeopigments using the least squares approximation technique. Deep-Sea Res 40:1747–1765

    CAS  Google Scholar 

  • Nichols PD, Guckert JB, White DC (1986) Determination of monounsaturated fatty acids double bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55

    CAS  Google Scholar 

  • Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods of aquatic ecology. Lewis Publishers, Boca Raton, pp 303–307

    Google Scholar 

  • Normand P (1995) Utilisation des séquences 16S pour le positionnement phylétique d’un organisme inconnu. Oceanis 21:31–56

    Google Scholar 

  • Nyonyo T, Shinkai T, Tajima A, Mitsumori M (2012) Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria. Lett Appl Microbiol 56:63–70

    PubMed  Google Scholar 

  • Ogram A, Sun W, Brockman FJ, Fredrickson JK (1995) Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Appl Environ Microbiol 61:763–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onstott TC et al (1997) The deep gold mines of South Africa: Windows into the subsurface biosphere. Proc SPIE Int Soc Opt Eng 3111:344–357

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    CAS  PubMed  Google Scholar 

  • Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58

    CAS  Google Scholar 

  • Parisot N, Denonfoux J, Dugat-Bony E, Peyret P, Peyretaillade E (2012) KASpOD–a web service for highly specific and explorative oligonucleotide design. Bioinformatics 28:3161–3162

    CAS  PubMed  Google Scholar 

  • Pedersen K (2001) Subterranean microorganisms and radioactive waste disposal in Sweden. Eng Geol 59:163–176

    Google Scholar 

  • Peeva VK, Lynch JL, Desilva CJ, Swanson NR (2008) Evaluation of automated and conventional microarray hybridization – a question of data quality and best practice? Biotechnol Appl Biochem 50:181–190

    CAS  PubMed  Google Scholar 

  • Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484

    CAS  PubMed  Google Scholar 

  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postec A, Le Breton C, Fardeau ML, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005a) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221

    CAS  PubMed  Google Scholar 

  • Postec A, Pignet P, Cueff-Gauchard V, Schmitt A, Querellou J, Godfroy A (2005b) Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media. Res Microbiol 156:82–87

    CAS  PubMed  Google Scholar 

  • Postec A, Urios L, Lesongeur F, Ollivier B, Querellou J, Godfroy A (2005c) Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems. Curr Microbiol 50:138–144

    CAS  PubMed  Google Scholar 

  • Postec A, Lesongeur F, Pignet P, Ollivier B, Querellou J, Godfroy A (2007) Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11:747–757

    PubMed  Google Scholar 

  • Pozhitkov A, Noble PA, Domazet-Loso T, Nolte AW, Sonnenberg R, Staehler P et al (2006) Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res 34:e66

    PubMed Central  PubMed  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles: a critique. FEMS Microbiol Ecol 42:1–14, 869

    CAS  PubMed  Google Scholar 

  • Pringault O, Tassas V, Rochelle-Newall E (2007) Consequences of light respiration on the determination of production in pelagic systems. Biogeosciences 4:105–114

    CAS  Google Scholar 

  • Ranjard L, Richaume A, Jocteur-Monrozier L, Nazaret S (1997) Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location. FEMS Microbiol Ecol 24:321–331

    CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    PubMed  Google Scholar 

  • Rappé S, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    PubMed  Google Scholar 

  • Raven N, Ladwa N, Cossar D, Sharp R (1992) Continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus. Appl Microbiol Biotechnol 38:263–267

    CAS  Google Scholar 

  • Richard FA, Thompson TG (1952) The estimation and characterization of plankton by pigments analyses. II. A spectrophotometric method for the estimation of plankton pigments. J Mar Res 21:155–172

    Google Scholar 

  • Rimour S, Hill D, Militon C, Peyret P (2005) Go Arrays: highly dynamic and efficient microarray probe design. Bioinformatics 21:1094–1103

    CAS  PubMed  Google Scholar 

  • Robinson C, Williams PJ leB (1999) Plankton net community production and dark respiration in the Arabian Sea during September 1994. Deep-Sea Res part II 46:745–765

    Google Scholar 

  • Robinson C et al (2010) Mesopelagic ecology and biogeochemistry – a synthesis. Deep-Sea Res II 57:1504–1518

    CAS  Google Scholar 

  • Roland F, Caraco NF, Cole JJ, del Giorgio P (1999) Rapid and precise determination of dissolved oxygen by spectrophotometry: evaluation of interference from color and turbidity. Limnol Oceanogr 44:1148–1154

    CAS  Google Scholar 

  • Rowe GT, Deming JW (2011) An alternative view of the role of heterotrophic microbes in the cycling of organic matter in deep-sea sediments. Mar Biol Res 7:629–636

    Google Scholar 

  • Ryther JH, Yentsch CS (1957) The estimation of phytoplankton, production in the ocean from chlorophyll and light data. Limnol Oceanogr 2:281–286

    Google Scholar 

  • Saiki RK et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    CAS  PubMed  Google Scholar 

  • Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306

    CAS  PubMed  Google Scholar 

  • Scholten JC, Culley DE, Nie L, Munn KJ, Chow L, Brockman FJ, Zhang W (2007) Development and assessment of whole-genome oligonucleotide microarrays to analyze an anaerobic microbial community and its responses to oxidative stress. Biochem Biophys Res Commun 358:571–577

    CAS  PubMed  Google Scholar 

  • Sebat JL, Colwell FS, Crawford RL (2003) Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 69:4927–4934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, Panikov NS, Epsteina SS (2012) New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 78:194–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slawyk G, Raimbault P (1995) A simple procedure for the simultaneous recovery of dissolved inorganic and organic nitrogen in 15N-tracer experiments on oceanic waters improving the mass balance. Mar Ecol Prog Ser 124:289–299

    CAS  Google Scholar 

  • Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142

    CAS  Google Scholar 

  • Spring S, Schulze R, Overmann J, Schleifer K-H (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590

    CAS  PubMed  Google Scholar 

  • Stanley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Google Scholar 

  • Steemann Nielsen E (1951) Measurement of the production of organic matter in the Sea. Nature 167:684

    Google Scholar 

  • Stender H, Lund K, Petersen KH, Rasmussen OF, Hongmanee P, Miorner H, Godtfredsen SE (1999) Fluorescence In situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 37:2760–2765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steward GF, Fandino LB, Hollibaugh JT, Whitledge TE, Azam F (2007) Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean. Deep-Sea Res I 54:1744–1757

    Google Scholar 

  • Stingl U, Tripp HJ, Giovannoni SJ (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Times Series study site. Int Soc Microbiol Ecol 1:361–371

    CAS  Google Scholar 

  • Stramski D et al (2008) Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic oceans. Biogeosciences 5:171–201

    CAS  Google Scholar 

  • Strickland JDH (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Can 122:1–172

    Google Scholar 

  • Strom SL (2000) Bacterivory: interactions between bacteria and their grazers. In: Kirchman DL (ed) Microbial of the oceans. Wiley-Liss, New York, pp 351–386

    Google Scholar 

  • Syakti AD, Mazzella N, Torre F, Acquaviva M, Gilewicz M, Guiliano M, Bertrand J-C, Doumenq P (2006) Influence of growth phase on the phospholipidic fatty acid composition of two marine bacterial strains in pure and mixed cultures. Res Microbiol 157:479–486

    CAS  PubMed  Google Scholar 

  • Tabor P, Colwell RR (1976) Initial investigation with a deep ocean in situ sampler. In: Proceedings of the MTS/IEEE OCEANS’76. IEEE, Washington, DC, pp 13D-11–13D-14

    Google Scholar 

  • Talbot V, Bianchi M (1995) Utilisation d’un substrat modèle fluorogène pour mesurer l’activité enzymatique extracellulaire (AEE) bactérienne. Oceanis 21:247–260

    CAS  Google Scholar 

  • Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamburini C, Garcin J, Bianchi A (2003) Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat Microb Ecol 32:209–218

    Google Scholar 

  • Tamburini C, Garcin J, Grégori G, Leblanc K, Rimmelin P, Kirchman DL (2006) Pressure effects on surface Mediterranean prokaryotes and biogenic silica dissolution during a diatom sinking experiment. Aquat Microb Ecol 43:267–276

    Google Scholar 

  • Tamburini C et al (2009) Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res II 56:1533–1546

    CAS  Google Scholar 

  • Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW (2013) Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ Microbiol 15:1262–1274

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Hanada S, Manome A, Tsuchida T, Kurane R, Nakamura K, Kamagata Y (2004) Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int J Syst Evol Microbiol 54:955–959

    CAS  PubMed  Google Scholar 

  • Tang JW, Baldocchi DD, Qi Y, Xu LK (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118:207–220

    Google Scholar 

  • Tang J-C, Kanamori T, Inoue Y, Yasuta T, Yoshida S, Katayama A (2004) Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochem 39:1999–2006

    CAS  Google Scholar 

  • Terrat S, Peyretaillade E, Goncalves O, Dugat-Bony E, Gravelat F, Mone A et al (2010) Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development. BMC Bioinformatics 11:478

    PubMed Central  PubMed  Google Scholar 

  • Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    CAS  Google Scholar 

  • Tholosan O, Garcin J, Bianchi A (1999) Effects of hydrostatic pressure on microbial activity through a 2000 m deep water column in the NW Mediterranean Sea. Mar Ecol Prog Ser 183:49–57

    Google Scholar 

  • Timlin JA (2006) Scanning microarrays: current methods and future directions. Methods Enzymol 411:79–98

    CAS  PubMed  Google Scholar 

  • Turley CM (1993) The effect of pressure on leucine and thymidine incorporation by free-living bacteria and by bacteria attached to sinking oceanic particles. Deep-Sea Res I 40:2193–2206

    CAS  Google Scholar 

  • Turley CM, Mackie PJ (1994) Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean. Mar Ecol Prog Ser 115:191–203

    Google Scholar 

  • Turley CM, Mackie PJ (1995) Bacterial and cyanobacterial flux to the deep NE Atlantic on sedimenting particles. Deep-Sea Res I 42:1453–1474

    Google Scholar 

  • Turley CM, Lochte K, Lampitt RS (1995) Transformation of biogenic particles during sedimentation in the northeastern Atlantic. Philos Trans R Soc Lond B Biol Sci 348:179–189

    CAS  Google Scholar 

  • Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uitz J, Claustre H, Morel A, Hooker S (2006) Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J Geophys Res 111:C08005. doi:10.1029/2005JC003207

    Google Scholar 

  • UNESCO (1966) Determination of photosynthetic pigments in seawater. UNESCO Monographs on oceanograph methodology. UNESCO, Paris

    Google Scholar 

  • Van der Meer MTJ, Schouten S, Sinninghe Damsté JS (1998) The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org Geochem 28:527–533

    Google Scholar 

  • Van der Meer MTJ et al (2001) Biosynthetic controls on the 13C contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus. J Biol Chem 276:10971–10976

    PubMed  Google Scholar 

  • Vaqué D, Gasol JM, Marasse C (1994) Grazing rates on bacteria: The significance of methodology and ecological factors. Mar Ecol Prog Ser 109:263–274

    Google Scholar 

  • Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241

    CAS  PubMed  Google Scholar 

  • Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    CAS  PubMed  Google Scholar 

  • Wakeham SG, Lee C (1993) Production, transport, and alteration of particulate organic matter in the marine water column. In: Engel M, Macko S (eds) Organic geochemistry. Plenum Press, New York, pp 145–169

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witte U, Wenzhofer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham WR, Jorgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolber PK, Collins PJ, Lucas AB, De Witte A, Shannon KW (2006) The Agilent in situ-synthesized microarray platform. Methods Enzymol 410:28–57

    CAS  PubMed  Google Scholar 

  • Wu L, Thompson DK, Liu X, Fields MW, Bagwell CE, Tiedje JM, Zhou J (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38:6775–6782

    CAS  PubMed  Google Scholar 

  • Yasumoto-Hirose M, Nishijima M, Ngirchechol MK, Kanoh K, Shizuri Y, Miki W (2006) Isolation of marine bacteria by in situ culture on media-supplemented polyurethane foam. Mar Biotechnol 8:227–237

    CAS  PubMed  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep-sea. Annu Rev Microbiol 49:777–805

    CAS  PubMed  Google Scholar 

  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231

    CAS  Google Scholar 

  • Young LY, Phelps CD (2005) Metabolic biomarker for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Perspect 113:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zak J, Willig M, Moorhead D, Wildman H (1994) Functional diversity of microbial communities : a quantitative approach. Soil Biol Biochem 26:1101–1108

    Google Scholar 

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686

    CAS  PubMed Central  PubMed  Google Scholar 

  • ZoBell CE (1970) Pressure effects on morphology and life processes of bacteria. In: Zimmerman HM (ed) High pressure effects on cellular processes. Academic, New York, pp 85–130

    Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Joux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Joux, F. et al. (2015). Methods for Studying Microorganisms in the Environment. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_17

Download citation

Publish with us

Policies and ethics