Skip to main content
Log in

Cysteine-dependent 5-S-cysteinyldopa formation and its regulation by glutathione in normal epidermal melanocytes

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Recent evidence suggests that the melanogenesis intermediate 5-S-cysteinyldopa (5-S-CD) could display antioxidative activity. In the present study, the synthesis of 5-S-CD was examined in human epidermal melanocytes isolated from dark skin type VI (MT) and from white skin type III (GT). The MT melanocytes showed the higher melanin content and dopa oxidase activity. In addition, they produced eumelanin as shown by their ultrastructure, and the solubility and UV/visible absorption of the isolated pigment. Both MT and GT cells showed high levels of 5-S-CD (5.5–6.9 nmol/mg protein). 5-S-CD was also detected in culture supernatants from MT cells; the secretion rate was estimated to be 2.5 nmol/mg protein per 24 h. The role of cysteine and glutathione in 5-S-CD formation was investigated by exposing the melanocytes to theγ-glutamylcysteine synthetase inhibitorl-buthionine sulfoximine (BSO). A strong reduction in glutathione levels (4–8% of the untreated controls) associated with an increase in cysteine levels (152–154%) was observed. In addition, BSO induced a moderate increase in the cellular levels of 5-S-CD (114–129%) and a decrease in dopa oxidase activity (75–83%). Our results indicate that the direct addition of cysteine to dopaquinone is the main source of 5-S-CD in human epidermal melanocytes. It is proposed that the synthesis of 5-S-CD is a mechanism regulating dopaquinone levels during pigment formation and/or a defence mechanism against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrup G, Falck B, Kennedy B-M, Rorsman H, Rosengren A-M, Rosengren E (1975) Formation of cysteinyldopa from glutathionedopa in melanoma. Acta Derm Venereol (Stockh) 55: 1–3

    CAS  Google Scholar 

  • Ando H, Oka M, Ichihashi M, Mishima Y (1990) Protein kinase C and linoleic acid-induced inhibition of melanogenesis. Pigment Cell Res 3: 200–206

    Article  PubMed  CAS  Google Scholar 

  • Barrandon Y, Li V, Green H (1988) New techniques for the grafting of cultured human epidermal cells onto athymic animals. J Invest Dermatol 91: 315–318

    Article  PubMed  CAS  Google Scholar 

  • Benathan M, Alvero-Jackson H, Mooy A-M, Scaletta C, Frenk E (1992) Relationship between melanogenesis, glutathione levels and melphalan toxicity in human melanoma cells. Melanoma Res 2: 305–314

    PubMed  CAS  Google Scholar 

  • Benathan M, Scaletta C, Frenk E (1994) Demonstration of tyrosinase-dependent and tyrosinase-independent 5-S-cysteinyldopa genesis in vitro. Melanoma Res 4[Suppl 2]: 14

    Google Scholar 

  • Bustamante J, Bredeston L, Malanga G, Mordoh J (1993) Role of melanin as a scavenger of active oxygen species. Pigment Cell Res 6: 348–353

    Article  PubMed  CAS  Google Scholar 

  • Carstam R, Hansson C, Lindbladh, Rorsman H, Rosengren E (1987) Dopaquinone addition products in cultured human melanoma cells. Acta Derm Venereol (Stockh) 67: 100–105

    CAS  Google Scholar 

  • Connor M, Wheeler L (1987) Depletion of cutaneous glutathione by ultraviolet radiation. Photochem Photobiol 46: 239–245

    PubMed  CAS  Google Scholar 

  • Eisinger M, Marko O (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA 79: 2018–2022

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254: 7558–7560

    PubMed  CAS  Google Scholar 

  • Hatta S, Mishima Y, Ichihashi M, Ito S (1988) Melanin monomers within coated vesicles and premelanosomes in melanin synthesizing cells. J Invest Dermatol 91: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Iizawa O, Kato T, Tagami H, Akamatsu H, Niwa Y (1994) Longterm follow-up study of changes in lipid peroxide levels and the activity of superoxide dismutase, catalase and glutathione peroxidase in mouse skin after acute and chronic UV irradiation. Arch Dermatol Res 286: 47–52

    Article  PubMed  CAS  Google Scholar 

  • Ito S (1989) Optimization of conditions for preparing synthetic pheomelanin. Pigment Cell Res 2: 53–56

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kato T, Maruta K, Fujita K (1984) Determination of DOPA, dopamine, and 5-S-cysteinyl-DOPA in plasma, urine, and tissue samples by high-performance liquid chromatography with electrochemical detection. J Chromatogr 311: 154–159

    PubMed  CAS  Google Scholar 

  • Jergil B, Lindbladh CH, Rorsman H, Rosengren E (1984) Inactivation of human tyrosinase by cysteine. Protection by dopa and tyrosine. Acta Derm Venereol (Stockh) 64: 155–182

    CAS  Google Scholar 

  • Kågedal B, Gawelin A-L, Pettersson A (1987) Synthesis of 5-S-L-cysteinyl-glycine-L-dopa, a natural substrate for serum and melanocyte dipeptidase. Anal Biochem 165: 167–174

    Article  PubMed  Google Scholar 

  • Karg E, Odh G, Rosengren E, Wittbjer A, Rorsman H (1991a) Melanin-related biochemistry of IGR 1 human melanoma cells. Melanoma Res 1: 5–13

    PubMed  CAS  Google Scholar 

  • Karg E, rosengren E, Rorsman H (1991b) Hydrogen peroxide as a mediator of dopac-induced effects on melanoma cells. J Invest Dermatol 96: 224–227

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Nishikawa T, Kawakishi S (1995) Formation of protein-bound 3,4-dihydroxyphenylalanine in collagen types I and IV exposed to ultraviolet light. Photochem Photobiol 61: 367–372

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Urabe K, Winder A, Jiménez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron J-C, Hearing V (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13: 5818–5825

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RS (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Marmol V del, Ito S, Jackson I, Vachtenheim J, Berr P, Ghanem G, Morandini R, Wakamatsu K, Huez G (1993) TRP-1 expression correlates with eumelanogenesis in human pigment cells in culture. FEBS Lett 327: 307–310

    Article  PubMed  Google Scholar 

  • Mojamdar M, Ichihashi M, Mishima Y (1983)γ-Glutamyl transpeptidase, tyrosinase, and 5-S-cysteinylgopa production in melanoma cells. J Invest Dermatol 81: 119–121

    Article  PubMed  CAS  Google Scholar 

  • Napolitano A, Palumbo A, Misuraca G, Prota G (1993) Inhibitory effect of melanin precursors on arachidonic acid peroxidation. Biochim Biophys Acta 1168: 175–180

    PubMed  CAS  Google Scholar 

  • Pavel S (1993) Regulatory mechanisms of melanogenesis: beyond the tyrosinase concept. J Invest Dermatol 100: 156S-161S

    Article  Google Scholar 

  • Rorsman H, Albertsson E, Edholm L-E, Hansson C, Ogren L, Rosengren E. (1988) Thiols in the melanocyte. Pigment Cell Res [Suppl] 1: 54–60

    Article  Google Scholar 

  • Schallreuter K, Wood J, Lemke R, LePoole C, Das P, Westerhof W, Pittelkow M, Thody A (1992) Production of catecholamines in the human epidermis. Biochim Biophys Res Commun 189: 72–78

    Article  CAS  Google Scholar 

  • Schmitz S, Thomas P, Allen T, Poznansky M, Jimbow K (1995) Dual role of melanins and melanin precursors as photoprotective and phototoxic agents: inhibition of ultraviolet radiation-induced lipid peroxidation. Photochem Photobiol 61: 650–655

    PubMed  CAS  Google Scholar 

  • Shindo Y, Witt E, Packer L (1993) Antioxidant defense mechanisms in murine epidermis and dermis and their responses to ultraviolet light. J Invest Dermatol 100: 260–265

    Article  PubMed  CAS  Google Scholar 

  • Sichel G, Corsaro C, Scalia M, Di Bilio A, Bonomo R (1991) In vitro scavenger activity of some flavonoids and melanins against O2 . Free Radic Biol Med 11: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Simpson J, Gieseg S, Dean R (1993) Free radical and enzymatic mechanisms for the generation of protein bound reducing moieties. Biochim Biophys Acta 1156: 190–196

    PubMed  CAS  Google Scholar 

  • Stein AF, Dills RL and Klaassen CD (1986) High-performance liquid chromatographic analysis of glutathione and its thiol and disulfide degradation products. J Chromatogr 381: 259–270

    PubMed  CAS  Google Scholar 

  • Tyrrell R, Pidoux M (1988) Correlation between endogenous glutathione content and sensitivity of cultured human skin cells to radiation at defined wavelengths in the solar ultraviolet range. Photochem Photobiol 47: 405–412

    PubMed  CAS  Google Scholar 

  • Winder A, Wittbjer A, Rosengren E, Rorsman H (1993) Fibroblasts expressing mouse c locus tyrosinase produce an authentic enzyme and synthesize phaeomelanin. J Cell Sci 104(2): 467–475

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benathan, M., Labidi, F. Cysteine-dependent 5-S-cysteinyldopa formation and its regulation by glutathione in normal epidermal melanocytes. Arch Dermatol Res 288, 697–702 (1996). https://doi.org/10.1007/BF02505280

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505280

Key words

Navigation