Skip to main content
Log in

Selenoneine suppresses melanin synthesis by inhibiting tyrosinase in murine B16 melanoma cells and 3D-cultured human melanocytes

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The novel organic selenium compound, selenoneine, is found in the blood of tuna and has metal-binding activity. In this report, selenoneine displays tyrosinase inhibitory activity. When murine B16 melanoma cells were cultured in the presence of 1.0 μM selenoneine, the melanin content in the cells was reduced to 46.5% compared with the cell-induced melanin synthesis, and cellular tyrosinase activity was suppressed. In 3D-cultured human melanocytes, melanin accumulation was also decreased, to 39.7% and 23.0% by 1.0 and 5.0 μM selenoneine, respectively, compared with the control cells. Both cellular and purified enzyme assays showed that selenoneine inhibited tyrosinase activity against the substrate, l-3,4-dihydroxyphenylalanine (l-DOPA). An in silico docking simulation study supported a molecular mechanism in which selenoneine chelates copper ions in the active center of tyrosinase and prevents the reaction between tyrosinase and l-DOPA. These findings suggest that selenoneine has a novel biological function by inhibiting tyrosinase via copper chelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akiu S, Suzuki Y, Asahara T, Fujinuma Y, Fukuda M (1991) Inhibitory effect of arbutin on melanogenesis–biochemical study using cultured B16 melanoma cells. Jpn J Dermatol 101:609–613

    CAS  Google Scholar 

  • Banerjee M, Karri R, Rawat KS, Muthuvel K, Pathak B, Roy G (2015) Chemical detoxification of organomercurials. Angew Chem 127:9455–9459

    Article  Google Scholar 

  • Battaini G, Monzani E, Casella L, Santagostini L, Pagliarin R (2000) Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid. J Biol Inorg Chem 5:262–268

    Article  CAS  Google Scholar 

  • Chen T, Wong YS (2009) Selenocystine induces reactive oxygen species—mediated apoptosis in human cancer cells. Biomed Pharmacother 63:105–113

    Article  CAS  Google Scholar 

  • Cooksey CJ, Garratt PJ, Land EJ, Pavel S, Ramsden CA, Riley PA, Smit NP (1997) Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J Biol Chem 272:26226–26235

    Article  CAS  Google Scholar 

  • Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkel R, Jung N, Rubbert A, Schömig E (2005) Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA 102:5256–5261

    Article  Google Scholar 

  • Jimbow K, Obata H, Pathak MA, Fitzpatrick TB (1974) Mechanism of depigmentation by hydroquinone. J Investig Dermatol 62:436–449

    Article  CAS  Google Scholar 

  • Kubo I, Kinst-Hori I (1999) Tyrosinase inhibitory activity of the olive oil flavor compounds. J Agric Food Chem 47:4574–4578

    Article  CAS  Google Scholar 

  • Lajis AFB, Hamid M, Ariff AB (2012) Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol. https://doi.org/10.1155/2012/952452

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao WC, Wu WH, Tsai PC, Wang HF, Liu YH, Chan CF (2012) Kinetics of ergothioneine inhibition of mushroom tyrosinase. Appl Biochem Biotechnol 166:259–267

    Article  CAS  Google Scholar 

  • Lima CR, Silva JRA, Cardoso ÉTC, Silva EO, Lameira J, do Nascimento JLN, Brasil DSB, Alves CN (2014) Combined kinetic studies and computational analysis on kojic acid analogs as tyrosinase inhibitors. Molecules 19:9591–9605

    Article  CAS  Google Scholar 

  • Marks MS, Seabra MC (2001) The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2:738–748

    Article  CAS  Google Scholar 

  • Matsuki M, Watanabe T, Ogasawara A, Mikami T, Matsumoto T (2008) Inhibitory mechanism of melanin synthesis by glutathione. J Pharm Soc Jpn 128:1203–1207

    Article  CAS  Google Scholar 

  • Mishima Y, Hatta S, Ohyama Y, Inazu M (1988) Induction of melanogenesis suppression: cellular pharmacology and mode of differential action. Pigment Cell Res 1:367–374

    Article  CAS  Google Scholar 

  • Ochiai A, Tanaka S, Imai Y, Yoshida H, Kanaoka T, Tanaka T, Taniguchi M (2016) New tyrosinase inhibitory decapeptide: molecular insights into the role of tyrosine residues. J Biosci Bioeng 121:607–613

    Article  CAS  Google Scholar 

  • Oetting WS (2000) The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation. Pigment Cell Melanoma Res 13:320–325

    Article  CAS  Google Scholar 

  • Ohguchi K, Akao Y, Nozawa Y (2006) Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci Biotechnol Biochem 70:1499–1501

    Article  CAS  Google Scholar 

  • Ohno O, Watabe T, Nakamura K, Kawagoshi M, Uotsu N, Chiba T, Yamada M, Yamaguchi K, Yamada K, Miyamoto K, Uemura D (2010) Inhibitory effects of bakuchiol, bavachin, and isobavachalcone isolated from Piper longum on melanin production in B16 mouse melanoma cells. Biosci Biotechnol Biochem 74:1504–1506

    Article  CAS  Google Scholar 

  • Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  Google Scholar 

  • Panich U, Onkoksoong T, Kongtaphan K, Kasetsinsombat K, Akarasereenont P, Wongkajornsilp A (2011) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch Pharm Res 34:811–820

    Article  CAS  Google Scholar 

  • Ralston NV, Ralston CR, Blackwell JL III, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811

    Article  CAS  Google Scholar 

  • Raymond LJ, Seale LA, Ralston NV (2011) Seafood selenium in relation to assessments of methylmercury exposure risks. Selenium. Springer, New York, pp 399–408

    Chapter  Google Scholar 

  • Seko T, Imamura S, Ishihara K, Yamashita Y, Yamashita M (2019) Inhibition of angiotensin-converting enzyme by selenoneine. Fish Sci 85:731–736

    Article  CAS  Google Scholar 

  • Shimogaki H, Tanaka Y, Tamai H, Masuda M (2000) In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int J Cosmet Sci 22:291–304

    Article  CAS  Google Scholar 

  • Shirasugi I, Kamada M, Matsui T, Sakakibara Y, Liu MC, Suiko M (2010) Sulforaphane inhibited melanin synthesis by regulating tyrosinase gene expression in B16 mouse melanoma cells. Biosci Biotechnol Biochem 74:579–582

    Article  CAS  Google Scholar 

  • Siwek B, Bahbouth E, Serra MÁ, Sabbioni E, de Pauw-Gillet MC, Bassleer R (1994) Effect of selenium compounds on murine B16 melanoma cells and pigmented cloned pB16 cells. Arch Toxicol 68:246–254

    Article  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    Article  CAS  Google Scholar 

  • Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T (2004) Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol Pharm Bull 27:510–514

    Article  CAS  Google Scholar 

  • Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, Tsuji AA (1999) Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett 419:107–111

    Article  Google Scholar 

  • Tobe T, Ueda K, Ando M, Okamoto Y, Kojima N (2015) Thiol-mediated multiple mechanisms centered on selenodiglutathione determine selenium cytotoxicity against MCF-7 cancer cells. J Biol Inorg Chem 20:687–694

    Article  CAS  Google Scholar 

  • Yadav S, Singh HB, Butcher RJ (2017) Synthesis and reactivity of selones and dihaloselones: complexation of selones with d8-and d10-metal ions. Eur J Inorg Chem 2017:2968–2979

    Article  CAS  Google Scholar 

  • Yamashita Y, Yamashita M (2010) Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem 285:18134–18138

    Article  CAS  Google Scholar 

  • Yamashita M, Yamashita Y, Ando T, Wakamiya J, Akiba S (2013a) Identification and determination of selenoneine, 2-selenyl-Nα,Nα,Nα-trimethyl-l-histidine, as the major organic selenium in blood cells in a fish-eating population on remote Japanese islands. Biol Trace Elem Res 156:36–44

    Article  CAS  Google Scholar 

  • Yamashita M, Yamashita Y, Suzuki T, Kani Y, Mizusawa N, Imamura S, Takemoto K, Hara T, Hossain A, Yabu T, Touhata K (2013b) Selenoneine, a novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo. Mar Biotechnol 15:559–570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Institute of Fisheries Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Seko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seko, T., Imamura, S., Ishihara, K. et al. Selenoneine suppresses melanin synthesis by inhibiting tyrosinase in murine B16 melanoma cells and 3D-cultured human melanocytes. Fish Sci 86, 171–179 (2020). https://doi.org/10.1007/s12562-019-01376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-019-01376-2

Keywords

Navigation