Skip to main content
Log in

Studies on excitation energy flow in the photosynthetic pigment system; Structure and energy transfer mechanism

  • Invited Article
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

Excitation energy flow in photosynthetic pigment systems is discussed in relation to structure of the system and transfer mechanism for each elementary process. Three typical examples for actual transfer processes are shown for the phycobilin system in cyanobacteria, the antenna system of photosynthetic bacteria and the Chla/c antenna system of brown algae. The main analytical method was the time-resolved fluorescence spectroscopy in the picosecond time range. In general, static optical charactersitics are not the main reason for the transfer efficiency, but the structure of the system is a prerequisite for the transfer process. On the phycobilin system, theoretical investigation was compared with experimental analysis, which leads to the essential understanding of the transfer process in terms of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

allophycocyanin

Bchl:

bacteriochlorophyll

CD:

circular dichroism

Chl:

chlorophyll

F685:

a representive expression of the fluorescence component located at 685 nm

FCPA:

fucoxanthin-chlorophyll protein assembly

LH:

light harvesting

LHC:

light harvesting complex

PBS:

phycobilisome

PC:

phycocyanin

PE:

phycoerythrin

PS:

photosystem

RC:

reaction center

References

  • Allen, J.P., G. Feher, T.O. Yates, H. Komiya andD.C. Rees. 1987. Structure of the reaction center fromRhodobacter sphaeroides R-26: the cofactors. Proc. Natl. Acad. Sci.84: 5730–5734.

    Article  PubMed  CAS  Google Scholar 

  • Bergström, H., V. Sundström, R. van Grondelle, E. Akesson andT. Gillbro. 1986. Energy transfer within the isolated light-harvesting B800–B850 pigment protein complex ofRhodobacter sphaeroides. Biochim. Biophys Acta852: 279–287.

    Article  Google Scholar 

  • Birks, J.B. 1970.In Photophysics of Aromatic Molecules. Wiley-Iluterience, New York.

    Google Scholar 

  • Brune, D.C., T. Nozawa andR.E. Blankenship. 1988. Antenna organization in green photosynthetic bacteria I. Aggregated bacteriochlorophyllc as a model for the 740 nm absorbing bacteriochlorophyllc inChloroflexus aurantiacus chlorosomes. Biochemistry26: 8644–8652.

    Article  Google Scholar 

  • Castelfranco, P.A. andS.I. Beale. 1981. Chlorophyll biosynthesis.In M.D. Hatch and N.K. Bordman, ed., The Biochemistry of Plants. A comrehensive treatise. Vol. 8, pp. 375–421. Academic Press, New York.

    Google Scholar 

  • Deisenhoffer, J., O. Epp, K. Miki, R. Huber andM. Michel. 1985. Structure of the protein subunits in the photosynthetic reaction center ofRhodopseudomonas viridis at 3Å resolution. Nature318: 618–624.

    Article  Google Scholar 

  • Dexter, D.L. 1953. A theory of sensitized luminescence in solids. J. Chem. Phys.21: 836–850.

    Article  CAS  Google Scholar 

  • Feick, R.G. andR.C. Fuller. 1984. Topology of the photosynthetic apparatus ofChloroflexus aurantiacus. Biochemistry23: 3693–3698.

    Article  CAS  Google Scholar 

  • Förster, T. 1948. Intermolecular energy transfer and fluorescence. Ann. Phys. Leipzig.2: 55–75.

    Google Scholar 

  • Glazer, A.N. 1984. Phycobilisome—a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta768: 29–51.

    CAS  Google Scholar 

  • Griebenow, K. and A.R. Holzwarth. Biochemical evidence for chromophore-chromophore interaction as the main organizational principle in chlorosomes ofChloroflexus aurantiacus.In G. Drews, ed., The Molecular Biology of Phototrophic Bacteria, Plenum Press (in press).

  • Green, B.R. 1988. The chlorophyll-protein complexes of higher plant photosynthetic membranes or just what green band is that? Photosynthe. Res.15: 3–32.

    Article  CAS  Google Scholar 

  • Hayashi, H., K. Shimada, T. Nozawa andM. Hatano. 1986. Circular dichroism and resonance Raman spectra of bacteriochlorophyll-protein complexes from aerobic bacteria,Erythrobacter longus andErythrobacter species OCh 114. Photobiochem. Photobiophys.10: 223–231.

    CAS  Google Scholar 

  • Holzwarth, A.R. 1989. Application of ultrafast laser spectroscopy for the study of biological systems. Quat. Rev. Biophys.22: 239–326.

    Article  CAS  Google Scholar 

  • Katoh, T., M. Mimuro andS. Takaichi. 1989. Light-harvesting particles isolated from a brown alga,Dictyota dichotoma. A supramolecular assembly of fucoxanthinchlorophyll-protein complexes. Biochim. Biophys. Acta976: 233–240.

    CAS  Google Scholar 

  • Komagata, K. 1989. Taxonomy of facultative methylotrophs.In K. Harashima, T. Shiba and N. Murata, ed., Aerobic Photosynthetic Bacteria, pp. 25–38, Japanese Scientific Societies Press, Tokyo.

    Google Scholar 

  • Lam, E., W. Ortiz andR. Malkin. 1984. Chlorophylla/b proteins of photosystem I. FEBS Lett.166: 10–14.

    Article  Google Scholar 

  • Larkum, A.W.D. andJ. Barrett. 1983. Light-harvesting processes in algae. Adv. Bot. Res.10: 1–219.

    Article  CAS  Google Scholar 

  • Michel, H., O. Epp andJ. Deisenhofer. 1987. Pigment-protein interactions in the photosynthetic reaction, center fromRhodopseuodomonas viridis. EMBO J.5: 2445–2451.

    Google Scholar 

  • — andDeisenhofer. 1988. Relevance of the photosynthetic reaction, center from purple bacteria to the structure of photosystem II. Biochemistry27: 1–7.

    Article  CAS  Google Scholar 

  • Mimuro M., P. Fueglistaller, R. Rumbeli andH. Zuber. 1986a. Functional assignement of chormophores and energy transfer in C-phycocyanin isolated from the thermophilic cyanobacteriumMastigocladus laminosus. Biochim. Biophys. Acta848: 155–166.

    Article  CAS  Google Scholar 

  • —,C.A. Lipschultz andE. Gantt. 1986b. Energy flow in the phycobilisome core ofNostoc sp. (MAC); Two independent terminal pigments. Biochim. Biophys. Acta852: 126–132.

    Article  CAS  Google Scholar 

  • —,I. Yamazaki, N. Tamai S. Itoh andK. Satoh. 1988. Dynamic fluorescence properties of D1-D2-cytochromeb 559 complex isolated from spinach chloroplasts: analysis by means of the time-resolved fluorescence spectra in picosecond time range. Biochim. Biophys. Acta933: 478–486.

    Article  CAS  Google Scholar 

  • ——— andT. Katoh. 1989a. Excitation energy transfer in phycobilisomes at −196 C isolated from the cyanobacteriumAnabaena variabilis (M-3): evidence for the plural transfer pathways to the terminal emitters. Biochim. Biophys. Acta973: 153–162.

    CAS  Google Scholar 

  • —,T. Nozawa, N. Tamai K. Shimada, I. Yamazaki, R. Lin, R.S. Knox, B.R. Wittmershaus, D.C. Brune andR.E. Blankenship. 1989b. Excitation energy flow in chlorosome antenna of green photosynthetic bacteria. J. Phys. Chem.93: 7503–7509.

    Article  CAS  Google Scholar 

  • —,T. Katoh andH. Kawai. 1990a. Spatial arrangement of pigments and their interaction in the fucoxanthin-chlorophylla/c protein assembly (FCPA) isolated from the brown algaDictyota dichotoma: Analysis by means of polarized spectroscopy. Biochim. Biophys. Acta1015: 450–456.

    Article  CAS  Google Scholar 

  • —,N. Tamai, T. Ishimaru andI. Yamazaki. 1990b. Characteristic fluorescence components in the pigment system of the marine dinoflagellateProtogonyaulax tamarensis and energy flow among them: Studies by means of steady-state and time-resolved fluorescence spectroscopy. Biochim. Biophys. Acta1016: 280–287.

    Article  Google Scholar 

  • Mimuro M. and T. Katoh. Carotenoids in photosynthesis—Absorption, transfer and dissipation of light energy. Pure Appl. Chem. (in press.)

  • Murata, N. andK. Satoh. 1986. Absorption and fluorescence emission by intact cells, chloroplasts and chlorophyll-protein complexes.In Amesz J. Govindjee and D.C. Fork, ed., Light emission by plants and bacteria, pp. 137–159. Academic Press, New York.

    Google Scholar 

  • Olson, J.M. 1980. Chlorophyll organization in green photosynthetic bacteria. Biochim. Biophys. Acta594: 33–51.

    PubMed  CAS  Google Scholar 

  • Redlinger, T. andE. Gantt. 1982. A Mr 95,000 polypeptide inPorphyridium cruentum phycobilisomes and thylakoids: possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc. Natl. Acad. Sci. U.S.A.79: 5542–5546.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, K. andH. Scheer. 1988. Excitation, transfer in C-phycocyanin. Förster transfer rate and exciton, calculation based on new crystal structure data for C-phycocyanins fromAgemenellum quadruplicatum andMastigocladus laminosus. Biochim. Biophys. Acta936: 157–170.

    Article  CAS  Google Scholar 

  • Schirmer, T., W. Bode, R. Huber, W. Sidler andH. Zuber. 1985. X-ray crystallographic structure of the light-harvestign biliprotein C-phycocyanin from the thermophilic cyanobacteriumMastigocladus laminosus and its resemblance to globin structure. J. Mol. Biol.184: 257–277.

    Article  PubMed  CAS  Google Scholar 

  • —,R. Huber, M. SChneider, W. Bode, M. Miller andM.L. Hackert. 1986. Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin fromAgemenellum quadruplicatum. The molecular model and its implication for light harvesting. J. Mol. Biol.188: 651–676.

    Article  PubMed  CAS  Google Scholar 

  • — andM.G. Vincent. 1987. Polarized absorption and fluorescence spectra of single crystals of C-phycocyanin. Biochim. Biophys. Acta893: 379–385.

    Article  CAS  Google Scholar 

  • Shiba, T. andU. Shimidu. 1982.Erythrobacter longus gen., nov., sp. nov., an aerobic bacterium which contains bacterio-chlorophylla. Int. J. Sys., Bacteriol.32: 211–217.

    Article  Google Scholar 

  • Shimada, K., M. Mimuro, N. Tamai andI. Yamazaki. 1989. Excitation energy transfer inRhodobacter sphaeroides analyzed by the time-resolved fluorescence spectroscopy. Biochim. Biophys. Acta975: 72–79.

    CAS  Google Scholar 

  • —,N. Tamai, I. Yamazaki andM. Mimuro. 1990. Excitation energy flow in a photosynthetic bacterium lacking B850: Fast energy transfer from B806 to B870 inErythrobacter sp. strain OCh 114. Biochim. Biophys. Acta1016: 266–271.

    Article  CAS  Google Scholar 

  • Siefermann-Harms, D. 1985. Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim. Biophys. Acta811: 325–355.

    CAS  Google Scholar 

  • Stauber, J.L. andS.W. Jeffrey. 1988. Photosynthetic pigments in fifty-one species of marine diatoms. J. Phycol.24: 158–172.

    CAS  Google Scholar 

  • Sugiura, M. 1987. Structure and function of tobacco chloroplasts genomes. Bot. Mag. Tokyo100: 407–436.

    Article  CAS  Google Scholar 

  • Sundström, V., R. van Grondelle, H. Bergström, E. Akesson andT. Gillbro. 1986. Excitation energy transport in the bacteriochlorophyll antenna systems ofRhodospirillum rubrum andRhodobacter sphaeroides, studied by low density picosecond absorption spectroscopy. Biochim. Biophys. Acta851: 431–446.

    Article  Google Scholar 

  • Takamiya, K., K. Iba andK. Okamura. 1987. Reaction center complex from an aerobic photosynthetic bacterium,Erythrobacter sp. OCh 114. Biochim. Biophys. Acta890: 127–133.

    Article  CAS  Google Scholar 

  • Tandeau de Marsac, N.T. andG. Cohen-Bazire. 1977. Molecular composition of cyanobacterial phycobilisomes. Proc. Natl. Acad. Sci.74: 1635–1639.

    Article  Google Scholar 

  • Trost, J.T. andR.E. Blankenship. 1989. Isolation of a photoactive photosynthetic reaction center-core antenna complex fromHeliobacter mobilis. Biochemistry28: 9898–9904.

    Article  PubMed  CAS  Google Scholar 

  • van Grondelle, R. 1985. Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim. Biophys. Acta811: 147–195.

    Google Scholar 

  • H. Bergström, V. Sundström andT. Gillbro. 1987. Energy transfer within the bacteriochlorophyll antenna of purple bacteria at 77K, studied by picosecond absorption recovery. Biochim. Biophys. Acta894: 313–326.

    Article  Google Scholar 

  • Yamazaki, I., M. Mimuro, T. Murao, T. Yamazaki, K. Yoshihara andY. Fujita. 1984. Excitation, energy transfer in the light-harvesting antenna system of the red algaPorphyridium cruentum and the blue-green algaAnacystis nidulans; Analysis of time-resolved fluorescence spectra. Photochem. Photobiol.39: 233–240.

    CAS  Google Scholar 

  • N. Tamai, H. Kume, H. Tsuchiya andK. Oba. 1985. Micro-channel plate photomultiplier applicability to the time-resolved photon-counting method. Rev. Sci. Instrum.56: 1187–1194.

    Article  CAS  Google Scholar 

  • Zuber, H. 1985. Structure and function of light-harvesting complexes and their polypeptides. Photochem. Photobiol.42: 821–844.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Recipient of the Botanical Society Award for Young Scientists, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimuro, M. Studies on excitation energy flow in the photosynthetic pigment system; Structure and energy transfer mechanism. Bot Mag Tokyo 103, 233–253 (1990). https://doi.org/10.1007/BF02489628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02489628

Key words

Navigation