Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

Photosynthesis converts solar energy into energy of chemical bonds. This process is initiated when a photon of sunlight is absorbed by a photosynthetic pigment molecule, followed by a highly efficient transfer of the excitation energy, excitation trapping, and charge separation at the reaction center. The excited state dynamics initiated by light absorption are central to the primary reactions of photosynthesis. Unless successfully transferred away from the excited chromophore within the excitation lifetime, the excitation energy relaxes back to the electronic ground state, either via emission of a photon (radiative decay) or through various nonradiative processes. The photosynthetic machinery can control the nonradiative relaxation rate: it can increase it under stress conditions (e.g., high light) by adjusting electronic properties of chromophores as well as their interaction, or decrease it under optimal conditions reaching >90 % efficiency of energy transfer. Some background in photophysics is, therefore, needed to understand the mechanistic aspects of the initial events following photoexcitation of photosynthetic complexes. The goal of this chapter is to describe the excited states involved in photoreactions and to outline the physical basis of photophysical processes involved in photosynthesis. We introduce the principles of light absorption and the nature of electronic excited states and light-initiated dynamics in photosynthetic complexes. De-excitation pathways, rate constants, quantum yields and lifetimes of fluorescence, excitation energy transfer and related photophysics are discussed. In the concluding section, we present an overview of the mechanisms of non-photochemical quenching (NPQ) of chlorophyll fluorescence in terms of photophysics of the excited states of photosynthetic pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A g , B u , E u :

Excited state symmetry;

a u , b g , e g :

Molecular orbital symmetry;

B, Qx, Qy :

Chlorophyll singlet states;

C n , S n , σ h , I, e :

Molecular symmetry operators;

Chl:

Chlorophyll;

EET:

Excitation energy transfer;

EM:

Electromagnetic;

FRET:

Förster resonance energy transfer;

HOMO:

Highest occupied molecular orbital;

IC:

Internal conversion;

ISC:

Intersystem crossing;

LUMO:

Lowest unoccupied molecular orbital;

LH2:

Light-harvesting complex 2 of purple bacteria;

LHC:

Light-harvesting complex;

LHCII:

Light-harvesting complex II, a major antenna of PS II in plants and green algae;

NPQ:

Non-photochemical quenching of chlorophyll fluorescence;

PS I, PS II:

Photosystem I, photosystem II;

PSU:

Photosynthetic unit;

RC:

Reaction center;

S0, S1, and S2 :

Ground, first excited and second excited singlet states of carotenoids, not to be confused with similar names for the states of the oxygen evolving complex, the 4Mn-Ca (water) complex;

TDC:

Transition density cube;

Φfl, Φ ET , Φ tr , Φ PQ , Φ NPQ :

Quantum efficiencies of fluorescence (fl), energy transfer (ET), trapping (tr), photochemical (PQ) and non-photochemical quenching (NPQ) respectively; note that Φ PQ is equivalent to Φ p used by other authors

References

  • Ananyev G, Kolber ZS, Klimov D, Falkowski PG, Berry JA, Rascher U, Martin R, Osmond B (2005) Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoides stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Glob Chang Biol 11:1195–1206

    Google Scholar 

  • Andersson PO, Sergei T, Chen MBR, Gillbro T (1995) Solvent and temperature effects on dual fluorescence in a series of carotenes. Energy gap dependence of the internal conversion rate. J Phys Chem 5639:16199–16209

    Google Scholar 

  • Angerhofer A (1991) Chlorophyll triplets and radical pairs. In: Scheer H (ed) Chlorophylls. CRC Press, London, pp 945–991

    Google Scholar 

  • Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558

    CAS  PubMed  Google Scholar 

  • Barber J, Malkin S, Telfer A, Schreiber U (1989) The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philos Trans R Soc Lond B Biol Sci 323:227–239

    CAS  Google Scholar 

  • Barter LMC, Klug DR, van Grondelle R (2005) Energy trapping and equilibration: a balance of regulation and efficiency. In: Wydrzynski TJ, Satoh K, Freeman JA (eds) Photosystem II. Springer, Dordrecht, pp 491–514

    Google Scholar 

  • Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R, Valkunas L (2001) Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80:2409–2421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beddard GS, Porter G (1976) Concentration quenching in chlorophyll. Nature 260:366–367

    CAS  Google Scholar 

  • Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009) Beyond Förster resonance energy transfer in biological and nanoscale systems. J Phys Chem B 113:6583–6599

    CAS  PubMed  Google Scholar 

  • Berghuis BA, Spruijt RB, Koehorst RBM, van Hoek A, Laptenok SP, Van Oort B, van Amerongen H (2010) Exploring the structure of the N-terminal domain of CP29 with ultrafast fluorescence spectroscopy. Eur Biophys J 39:631–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birks JB (1970) Photophysics of Aromatic Molecules. Wiley, New York

    Google Scholar 

  • Bittner ER (2009) Quantum Dynamics: Applications in Biological and Materials Systems. CRC Press, New York

    Google Scholar 

  • Björn LO, Govindjee (2012) Dissecting oxygenic photosynthesis: the evolution of the “Z”-scheme for thylakoid reactions. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: Overviews on Recent Progress and Future Perspective. I.K. International Publishers, New Delhi, pp 1–27

    Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) A viewpoint: Why chlorophyll a? Photosynth Res 99:85–98

    Google Scholar 

  • Blankenship RE (2014) Molecular Mechanisms of Photosynthesis, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Boeker E, van Grondelle R (2011) Environmental Physics: Sustainable Energy and Climate Change, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Bowers PG, Porter G (1967) Quantum yields of triplet formation in solutions of chlorophyll. Proc R Soc Lond A 296:435–441

    Google Scholar 

  • Braslavsky SE, Fron E, Rodriguez HB, Roman ES, Scholes GD, Schweitzer G, Valeur B, Wirz J (2008) Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer. Photochem Photobiol Sci 7:1444–1448

    CAS  PubMed  Google Scholar 

  • Britton G (1983) Tetrapyrroles. In: Britton G (ed) The Biochemistry of Natural Pigments. Cambridge University Press, Cambridge, pp 156–222

    Google Scholar 

  • Brody SS, Rabinowitch E (1957) Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125:555

    CAS  PubMed  Google Scholar 

  • Broess K, Trinkunas G, van der Weij-de Wit CD, Dekker JP, van Hoek A, van Amerongen H (2006) Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys J 91:3776–3786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broess K, Trinkunas G, van Hoek A, Croce R, van Amerongen H (2008) Determination of the excitation migration time in photosystem II: consequences for the membrane organization and charge separation parameters. Biochim Biophys Acta 1777:404–409

    CAS  PubMed  Google Scholar 

  • Burikov SA, Klimov DV, Litvinov PN, Maslov DV, Fadeev VV (2001) Shore-based LIDAR for monitoring coastal sea water areas. Quantum Electron 31:745–750

    Google Scholar 

  • Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calhoun TR, Fleming GR (2011) Quantum coherence in photosynthetic complexes. Phys Status Solidi (B) 248:833–838

    CAS  Google Scholar 

  • Chachisvilis M, Kühn O, Pullerits T, Sundström V (1997) Excitons in photosynthetic purple bacteria: wavelike motion or incoherent hopping? J Phys Chem B 101:7275–7283

    CAS  Google Scholar 

  • Christensen R (2004) The electronic states of carotenoids. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, Volume 8. Springer, Dordrecht, pp 137–159

    Google Scholar 

  • Christensson N, Milota F, Nemeth A, Pugliesi I, Riedle E, Sperling J, Pullerits T, Kauffmann HF, Hauer J (2010) Electronic double-quantum coherences and their impact on ultrafast spectroscopy: the example of β-carotene. J Phys Chem Lett 1:3366–3370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chynwat V, Frank HA (1995) The application of the energy gap law to the S1 energies and dynamics of carotenoids. Chem Phys 194:237–244

    CAS  Google Scholar 

  • Clarke RH, Connors RE, Schaafsma TJ, Kleibeuker JF, Platenkamp RJ (1976) The triplet state of chlorophylls. J Am Chem Soc 98:3674–3677

    CAS  Google Scholar 

  • Clayton RK (1970) Light and Living Matter. Physical Part, Volume 1. McGraw-Hill, New York

    Google Scholar 

  • Clayton RK, Yamamoto T (1976) Photochemical quantum efficiency and absorption spectra of reaction centers from Rhodopseudomonas sphaeroides at low temperature. Photochem Photobiol 24:67–70

    CAS  Google Scholar 

  • Clegg RM (2004) Nuts and bolts of excitation energy migration and energy transfer. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 83–105

    Google Scholar 

  • Clegg RM (2006) The history of FRET: from conception through the labors of birth. In: Geddes CD, Lakowicz JR (eds) Reviews in Fluorescence. Springer, New York, pp 1–45

    Google Scholar 

  • Clegg RM, Sener M, Govindjee (2010) From Förster resonance energy transfer (FRET) to coherent resonance energy transfer (CRET) and back. A wheen o’ mickles mak’s a muckle. In: Alfano RR (ed) SPIE Proceedings in Optical Biopsy VII, Volume 7561. SPIE, Bellingham, pp 1–21

    Google Scholar 

  • Colbow K (1973) Energy transfer in photosynthesis. Biochim Biophys Acta 314:320–327

    CAS  PubMed  Google Scholar 

  • Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–647

    CAS  PubMed  Google Scholar 

  • Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA (2008) Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B 112:10689–10703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connelly JP, Müller MG, Hucke M, Gatzen G, Mullineaux CW, Ruban AV, Horton P, Holzwarth AR (1997) Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants. J Phys Chem B 101:1902–1909

    CAS  Google Scholar 

  • Croce R, van Amerongen H (2011) Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J Photochem Photobiol 104:142–153

    CAS  Google Scholar 

  • Croce R, Müller MG, Caffarri S, Bassi R, Holzwarth AR (2003) Energy transfer pathways in the minor antenna complex CP29 of photosystem II: a femtosecond study of carotenoid to chlorophyll transfer on mutant and WT complexes. Biophys J 84:2517–2532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dall’Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R (2007) The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19:1048–1064

    PubMed Central  PubMed  Google Scholar 

  • Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42:1861–1870

    CAS  PubMed  Google Scholar 

  • DeCoster B, Christensen RL, Gebhard R, Lugtenburg J, Farhoosh R, Frank HA (1992) Low-lying electronic states of carotenoids. Biochim Biophys Acta 1102:107–114

    CAS  PubMed  Google Scholar 

  • Dekker JP, van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–208

    CAS  PubMed  Google Scholar 

  • Dekker JP, van Grondelle R, Völker S (1998) Spectral distributions of “trap” pigments in the RC, CP47, and CP47−RC complexes of photosystem II at low temperature: a fluorescence line-narrowing and hole-burning study. J Phys Chem B 102:11007–11016

    Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Dirac PAM (1927) The quantum theory of the emission and absorption of radiation. Proc R Soc Lond A 114:243–265

    CAS  Google Scholar 

  • Dreuw A, Fleming GR, Head-Gordon M (2005) Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants. Biochem Soc Trans 33:858–862

    CAS  PubMed  Google Scholar 

  • Duysens L (1952) Transfer of excitation energy in photosynthesis, Doctoral Thesis, State University Utrecht, Netherlands, p 96

    Google Scholar 

  • Duysens LNM (1958) The path of light energy in photosynthesis. Brookhaven Symp Biol 11:10–23

    Google Scholar 

  • Eaton-Rye JJ, Tripathy BC, Sharkey TD (2012) Photosynthesis – Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosyntheis and Respiration, Volume 34. Springer, Dordrecht

    Google Scholar 

  • Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    CAS  PubMed  Google Scholar 

  • Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    CAS  Google Scholar 

  • Fassioli F, Dinshaw R, Arpin PC, Scholes GD (2014) Photosynthetic light harvesting: excitons and coherence. J R Soc Interface 11:20130901

    PubMed Central  PubMed  Google Scholar 

  • Ferguson J (1958) Absorption and fluorescence spectra of crystalline pyrene. J Chem Phys 28:765–768

    CAS  Google Scholar 

  • Fidder H, Knoester J, Wiersma DA (1991) Optical properties of disordered molecular aggregates: a numerical study. J Phys Chem 95:7880–7890

    CAS  Google Scholar 

  • Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–175

    Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55–75

    Google Scholar 

  • Förster T (1963) Formation and dissociation of excited dimers. Pure Appl Chem 7:73–78

    Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Academic, New York, pp 93–137

    Google Scholar 

  • Förster T (1967) Mechanisms of energy transfer. In: Florkin M, Stotz EH (eds) Comprehensive Biochemistry. Elsevier, Amsterdam, pp 61–80

    Google Scholar 

  • Förster T (1975) Excimers and exciplexes. In: Gordon M, Ware WR (eds) The Exciplex. Academic, New York, pp 1–21

    Google Scholar 

  • Förster T (2012) Energy migration and fluorescence. 1946. J Biomed Opt 17:011002

    PubMed  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    CAS  PubMed  Google Scholar 

  • Frank HA, Polívka T (2008) Energy transfer from carotenoids to bacteriochlorophylls. In: Hunter NC, Daldal F, Thurnauer MC, Beatty TJ (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Volume 28. Springer, Dordrecht, pp 213–230

    Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    CAS  PubMed  Google Scholar 

  • Frank HA, Desamero RZB, Chynwat V, Gebhard R, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR (1997) Spectroscopic properties of spheroidene analogs having different extents of π-electron conjugation. J Phys Chem A 101:149–157

    CAS  Google Scholar 

  • Frank HA, Young AJ, Britton G, Cogdell RJ (eds) (1999) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, Volume 8. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent Photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    Google Scholar 

  • Gilmore AM, Govindjee (1999) How higher plants respond to excess light: energy dissipation in photosystem II. In: Singhal GS, Renger G, Sopory SH, Irrgang KD, Govindjee (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishing House, New Delhi, pp 513–548

    Google Scholar 

  • Gilmore AM, Hazlett TL, Govindjee (1995) Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92:2273–2277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorbunov MY, Falkowski PG, Kolber ZS (2000) Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer. Limnol Oceanogr 45:242–245

    Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Austr J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Govindjee (1999) Carotenoids in photosynthesis: an historical perspective. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, Volume 8. Kluwer Academic Publishers (now Springer), Dordrecht, pp 1–19

    Google Scholar 

  • Govindjee (2004) Chlorophyll a Fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 1–42

    Google Scholar 

  • Govindjee, Amesz J, Fork DC (eds) (1986) Light Emission by Plants and Bacteria. Academic, Orlando

    Google Scholar 

  • Gradinaru C, van Stokkum I, Pascal A, van Grondelle R, van Amerongen H (2000) Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump-probe study. J Phys Chem B 104:9330–9342

    CAS  Google Scholar 

  • Green BR, Parson WW (eds) (2003) Light-harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, Volume 13. Kluwer Academic Publishers (now Springer), Dordrecht

    Google Scholar 

  • Greenfield SR, Seibert M, Wasielewski MR (1997) Direct measurement of the effective rate constant for primary charge separation in isolated photosystem II reaction centers. J Phys Chem B 101:2251–2255

    CAS  Google Scholar 

  • Grimm B, Porra RJ, Rüdiger W, Scheer H (Eds) (2006) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, Volume 25. Springer, Dordrecht

    Google Scholar 

  • Hansson O, Wydrzynski T (1990) Current perceptions of photosystem II. Photosynth Res 23:131–162

    CAS  PubMed  Google Scholar 

  • Herzberg G, Teller E (1933) Fluctuation structure of electron transfer in multiatomic molecules. Z Phys Chem B 21:410–446

    Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    CAS  PubMed  Google Scholar 

  • Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Philos Trans R Soc Lond B Biol Sci 355:1361–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu C-P, Walla PJ, Head-Gordon M, Fleming GR (2001) The role of the S1 state of carotenoids in photosynthetic energy transfer: the light-harvesting complex II of purple bacteria. J Phys Chem B 105:11016–11025

    CAS  Google Scholar 

  • Hu X, Schulten K (1997) How nature harvests sunlight. Phys Today 50:28–34

    CAS  Google Scholar 

  • Ilioaia C, Johnson MP, Liao P-N, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B (2011) Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J Biol Chem 286:27247–27254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishizaki A, Fleming GR (2009) Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc Natl Acad Sci USA 106:17255–17260

    PubMed Central  PubMed  Google Scholar 

  • Ishizaki A, Fleming GR (2012) Quantum coherence in photosynthetic light harvesting. Annu Rev Condens Matter Phys 3:333–361

    Google Scholar 

  • Jean JM, Chan C-K, Fleming GR, Owens TG (1989) Excitation transport and trapping on spectrally disordered lattices. Biophys J 56:1203–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez R, Dikshit SN, Bradforth SE, Fleming GR (1996) Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem 100:6825–6834

    CAS  Google Scholar 

  • Jursinic P, Govindjee (1977) Temperature dependence of delayed light emission in the 6 to 340 microsecond range after a single flash in chloroplasts. Photochem Photobiol 26:617–628

    CAS  Google Scholar 

  • Kaplanová M, Parma L (1984) Effect of excitation and emission wavelength on the fluorescence lifetimes of chlorophyll a. Gen Physiol Biophys 3:127–134

    PubMed  Google Scholar 

  • Kasajima I, Takahara K, Kawai-Yamada M, Uchimiya H (2009) Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. Plant Cell Physiol 50:1600–1616

    CAS  PubMed  Google Scholar 

  • Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14

    Google Scholar 

  • Ke B (2001a) Role of Carotenoids in Photosynthesis, a Chapter in “Photosynthesis: Photobiochemistry and Photobiophysics”. Advances in Photosynthesis and Respiration, Volume 10. Springer, Dordrecht, pp 229–250

    Google Scholar 

  • Ke B (2001b) Photosynthesis: Photobiochemistry and Photobiophysics. Advances in Photosynthesis and Respiration, Volume 10. Kluwer Academic Publihers (now Springer), Dordrecht

    Google Scholar 

  • Kennis JTM, Streltsov AM, Permentier H, Aartsma TJ, Amesz J (1997) Exciton coherence and energy transfer in the LH2 antenna complex of Rhodopseudomonas acidophila at low temperature. J Phys Chem B 101:8369–8374

    CAS  Google Scholar 

  • Kirstein S, Bourbon S, Gao M, De Rossi U (2000) Layer-by-layer deposition of J-aggregates and polyelectrolytes for electroluminescence applications: a spectroscopic study. Isr J Chem 40:129–138

    CAS  Google Scholar 

  • Knox RS (2012) Förster’s resonance excitation transfer theory: not just a formula. J Biomed Opt 17:011003

    PubMed  Google Scholar 

  • Kobayashi M, Akiyama M, Kano H, Kise H (2006) Spectroscopy and structure determination. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, Volume 25. Springer, Dordrecht, pp 79–94

    Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    CAS  PubMed  Google Scholar 

  • Kosumi D, Yanagi K, Fujii R, Hashimoto H, Yoshizawa M (2006) Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem Phys Lett 425:66–70

    CAS  Google Scholar 

  • Krause GH, Weiss E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Krikunova M, Kummrow A, Voigt B, Rini M, Lokstein H, Moskalenko A, Scheer H, Razjivin A, Leupold D (2002) Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically “dark”) S1 state of carotenoids. FEBS Lett 528:227–229

    CAS  PubMed  Google Scholar 

  • Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    CAS  Google Scholar 

  • Krüger TPJ, Novoderezhkin VI, Ilioaia C, van Grondelle R (2010) Fluorescence spectral dynamics of single LHCII trimers. Biophys J 98:3093–3101

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E, Horton P, van Grondelle R (2012) Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys J 102:2669–2676

    PubMed Central  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic Publishers, New York

    Google Scholar 

  • Liao M-S, Scheiner S (2002) Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. J Chem Phys 117:205–219

    CAS  Google Scholar 

  • Liao P-N, Bode S, Wilk L, Hafi N, Walla PJ (2010a) Correlation of electronic carotenoid–chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants. Chem Phys 373:50–55

    CAS  Google Scholar 

  • Liao P-N, Holleboom C-P, Wilk L, Kühlbrandt W, Walla PJ (2010b) Correlation of Car S(1) → Chl with Chl → Car S(1) energy transfer supports the excitonic model in quenched light harvesting complex II. J Phys Chem B 114:15650–15655

    CAS  PubMed  Google Scholar 

  • Livingston R (1960) Physicochemical aspects of some recent work on photosynthesis. Q Rev Chem Soc 14:174–199

    CAS  Google Scholar 

  • MacPherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T (2001) Efficient energy transfer from the carotenoid S-2 state in a photosynthetic light-harvesting complex. Biophys J 80:923–930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malkin S, Armond PA, Mooney HA, Fork DC (1981) Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity. Plant Physiol 67:570–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marian CM (2012) Spin-orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203

    CAS  Google Scholar 

  • May V, Kühn O (2011) Dynamics of Isolated and Open Quantum Systems. Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH Verlag GmbH, Weinheim, pp 81–194

    Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    CAS  Google Scholar 

  • McGlynn SP, Armstrong AT, Azumi T (1965) Interaction of molecular excitons, charge resonance states, and excimer luminescence. In: Sinanoglu O (ed) Modern Quantum Chemistry: Istanbul Lectures. Part III, Action of Light and Organic Crystals. Academic, New York, pp 203–228

    Google Scholar 

  • Melkozernov AN, Kargul J, Lin S, Barber J, Blankenship RE (2004) Energy coupling in the PSI−LHCI supercomplex from the green alga Chlamydomonas reinhardtii. J Phys Chem B 108:10547–10555

    CAS  Google Scholar 

  • Miloslavina Y, Szczepaniak M, Müller MG, Sander J, Nowaczyk M, Rögner M, Holzwarth AR (2006) Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry 45:2436–2442

    CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    CAS  PubMed  Google Scholar 

  • Mimuro M, Nagashima U, Takaichi S, Nishimura Y, Yamazaki I, Katoh T (1992) Molecular structure and optical properties of carotenoids for the in vivo energy transfer function in the algal photosynthetic pigment system. Biochim Biophys Acta 1098:271–274

    CAS  Google Scholar 

  • Monshouwer R, van Grondelle R (1996) Excitations and excitons in bacterial light-harvesting complexes. Biochim Biophys Acta 1275:70–75

    Google Scholar 

  • Monshouwer R, Abrahamsson M, van Mourik F, van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101:7241–7248

    CAS  Google Scholar 

  • Montroll EW (1969) Random walks on lattices. III. Calculation of first-passage times with application to exciton trapping on photosynthetic units. J Math Phys 10:753–765

    CAS  Google Scholar 

  • Moya I, Sebban P, Haehnel W (1986) Lifetime of excited states and quantum yield of chlorophyll a fluorescence in vivo. In: Govindjee, Amesz J, Fork DD (eds) Light Emission by Plants and Bacteria. Academic Press, Orlando (now available from Elsevier), pp 161–400

    Google Scholar 

  • Mukai K, Abe S, Sumi H (1999) Theory of rapid excitation-energy transfer from B800 to optically-forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103:6096–6102

    CAS  Google Scholar 

  • Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chem Phys Lett 11:1289–1296

    Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim Biophys Acta 1141:23–28

    CAS  Google Scholar 

  • Murrell JN, Tanaka J (1964) The theory of the electronic spectra of aromatic hydrocarbon dimers. Mol Phys 7:363–380

    CAS  Google Scholar 

  • Nemykin VN, Hadt RG (2010) Interpretation of the UV-vis spectra of the meso(ferrocenyl)-containing porphyrins using a TDDFT approach: is Gouterman’s classic four-orbital model still in play? J Phys Chem A 114:12062–12066

    CAS  PubMed  Google Scholar 

  • Noomnarm U, Clegg RM (2009) Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 101:181–194

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, van Grondelle R (2010) Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys Chem Chem Phys 12:7352–7365

    CAS  PubMed  Google Scholar 

  • Novoderezhkin V, Monshouwer R, van Grondelle R (1999a) Exciton (de)localization in the LH2 antenna of Rhodobacter sphaeroides as revealed by relative difference absorption measurements of the LH2 antenna and the B820 subunit. J Phys Chem B 103:10540–10548

    CAS  Google Scholar 

  • Novoderezhkin V, Monshouwer R, van Grondelle R (1999b) Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. Biophys J 77:666–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nuijs AM, van Gorkom HJ, Plijter JJ, Duysens LNM (1986) Primary-charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. Biochim Biophys Acta 848:167–175

    CAS  Google Scholar 

  • Owens T (1994) Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 95–109

    Google Scholar 

  • Papageorgiou GC (2012) Fluorescence emission from the photosynthetic apparatus. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynhesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration, Volume 34. Springer, Dordrecht, pp 415–443

    Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Kluwer Academic Publishers (now Springer), Dordrecht

    Google Scholar 

  • Pascal AA, Liu Z, Broess K, Van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban AV (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    CAS  PubMed  Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet excitons. In: Govindjee (ed) Photosynthesis: Energy Conversion by Plants and Bacteria. Academic Press, New York, pp 293–331

    Google Scholar 

  • Pearlstein RM (2005) Photosynthetic exciton theory in the 1960s. In: Govindjee, Beatty JT, Gest H, Allen JF (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, Volume 20. Springer, Dordrecht, pp 147–154

    Google Scholar 

  • Peterman EJ, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69:2670–2678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Rev 104:2021–2071

    PubMed  Google Scholar 

  • Polívka T, Sundström V (2009) Dark excited states of carotenoids: consensus and controversy. Chem Phys Lett 477:1–11

    Google Scholar 

  • Polívka T, Herek JL, Zigmantas D, Åkerlund H-E, Sundström V (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci USA 96:4914–4917

    PubMed Central  PubMed  Google Scholar 

  • Pullerits T, Freiberg A (1992) Kinetic model of primary energy transfer and trapping in photosynthetic membranes. Biophys J 63:879–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pullerits T, Visscher KJ, Hess S, Sundström V, Freiberg A, Timpmann K, van Grondelle R (1994) Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low-intensity picosecond absorption and fluorescence kinetics. Biophys J 66:236–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis, Wiley, New York (see http://www.life.illinois.edu/govindjee/g/Books.html, and http://www.life.illinois.edu/govindjee/photosynBook.html)

  • Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J Am Chem Soc 130:4431–4446

    CAS  PubMed  Google Scholar 

  • Razi Naqvi K (1998) Carotenoid-induced electronic relaxation of the first excited state of antenna chlorophylls. In: Garab G (ed) Photosynthesis: Mechanisms and Effects. Kluwer Academic Publishers, Dordrecht, pp 265–270

    Google Scholar 

  • Renger G (1999) Basic principles of photophysics and photochemistry. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D, Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht, pp 52–90

    Google Scholar 

  • Renger G (2008a) Overview of primary processes of photosynthesis. In: Renger G (ed) Primary Processes of Photosynthesis. The Royal Society of Chemistry, Cambridge, pp 5–35

    Google Scholar 

  • Renger T (2008b) Absorption of light, excitation energy transfer and electron transfer reactions. In: Renger G (ed) Primary Processes of Photosynthesis. The Royal Society of Chemistry, Cambridge, pp 39–97

    Google Scholar 

  • Renger T, Holzwarth AR (2008) Theory of excitation energy transfer and optical spectra of photosynthetic systems. In: Aartsma TJ, Matysik J (eds) Biophysical Techniques in Photosynthesis II. Advances in Photosynthesis and Respiration, Volume 26. Springer, Dordrecht, pp 421–443

    Google Scholar 

  • Rijgersberg CP, van Grondelle R, Amesz J (1980) Energy transfer and bacteriochlorophyll fluorescence in purple bacteria at low temperature. Biochim Biophys Acta 592:53–64

    CAS  PubMed  Google Scholar 

  • Robert B (2008) Spectroscopic properties of antenna complexes from purple bacteria. In: Hunter NC, Daldal F, Thurnauer MC, Beatty TJ (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Volume 28. Springer, Dordrecht, pp 199–212

    Google Scholar 

  • Romero E, Mozzo M, van Stokkum IHM, Dekker JP, van Grondelle R, Croce R (2009) The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. Biophys J 96:L35–L37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross RT, Calvin M (1967) Thermodynamics of light emission and free-energy storage in photosynthesis. Biophys J 7:595–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal A, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2011) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    PubMed  Google Scholar 

  • Rubio M, Roos BO, Serrano-Andrés L, Merchán M (1999) Theoretical study of the electronic spectrum of magnesium-porphyrin. J Chem Phys 110:7202–7209

    CAS  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, Volume 25. Springer, Dordrecht, pp 1–19

    Google Scholar 

  • Scherer P, Fischer SF (2010) Theoretical Molecular Biophysics. Springer, Dordrecht

    Google Scholar 

  • Schmidt M, Tavan P (2012) Electronic excitations in long polyenes revisited. J Chem Phys 136:124309

    PubMed  Google Scholar 

  • Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    CAS  PubMed  Google Scholar 

  • Scholes GD, Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Chem Phys B 104:1854–1868

    CAS  Google Scholar 

  • Scholes GD, Fleming GR (2005) Energy transfer and light harvesting. In: Berry RS, Jortner J (eds) Adventures in Chemical Physics: A Special Volume of Advances in Chemical Physics, Volume 132. Wiley, Hoboken, pp 57–129

    Google Scholar 

  • Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696

    CAS  PubMed  Google Scholar 

  • Scholes GD, Ghiggino KP, Wilson GJ (1991) Excimer geometries in bichromophoric molecules: a theoretical and experimental study of 1,2-(bis-9-anthryl)-ethane. Chem Phys 155:127–141

    CAS  Google Scholar 

  • Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 279–319

    Google Scholar 

  • Seely GR, Connolly JS (1986) Fluorescence of photosynthetic pigments in vitro. In: Govindjee A, Amesz J, Fork DD (eds) Light Emission by Plants and Bacteria. Academic, Orlando, pp 99–136

    Google Scholar 

  • Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fischer R, Scheer H, Gillbro T (1992) Femtosecond energy transfer between chromophores in allophycocyanin trimers. Chem Phys Lett 191:633–638

    CAS  Google Scholar 

  • Shevela D, Pishchalnikov RY, Eichacker LA, Govindjee (2013) Oxygenic photosynthesis in cyanobacteria. In: Srivastava AK, Rai AN, Neilan BA (eds) Stress Biology of Cyanobacteria. CRC Press, Taylor&Francis Group, Boca Raton, pp 3–40

    Google Scholar 

  • Shipman LL (1980) A theoretical study of excitons in chlorophyll a photosystems on a picosecond timescale. Photochem Photobiol 31:157–167

    CAS  Google Scholar 

  • Shipman LL (1982) Electronic structure and function of chlorophylls and their pheophytins. In: Govindjee (ed) Photosynthesis: Energy Conversion by Plants and Bacteria. Academic, New York, pp 275–293

    Google Scholar 

  • Somsen OJ, van Mourik F, van Grondelle R, Valkunas L (1994) Energy migration and trapping in a spectrally and spatially inhomogeneous light-harvesting antenna. Biophys J 66:1580–1596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song PS, Koka P, Prézelin BB, Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry 15:4422–4427

    CAS  PubMed  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 321–362

    Google Scholar 

  • Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103:252–260

    CAS  Google Scholar 

  • Sundström V, Pullerits T, van Grondelle R (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103:2327–2346

    Google Scholar 

  • Tavan P, Schulten K (1986) The low-lying electronic excitations in long polyenes: a PPP-MRD-CI study. J Chem Phys 85:6602

    CAS  Google Scholar 

  • Telfer A, Pascal A, Gall A (2008) Carotenoids in photosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 4: Natural Functions. Birkhauser-Verlag, Basel, pp 265–308

    Google Scholar 

  • Truscott GT, Edge R (2004) Carotenoid radicals and the interaction of carotenoids with active oxygen species. In: Frank HA, Young A, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, Volume 8. Kluwer (now Springer), Dordrecht, pp 223–234

    Google Scholar 

  • Valkunas L, Liuolia V, Dekker JP, van Grondelle R (1995) Description of energy migration and trapping in photosystem I by a model with two distance scaling parameters. Photosynth Res 43:149–154

    CAS  PubMed  Google Scholar 

  • van Amerongen H, Croce R (2013) Light harvesting in photosystem II. Photosynth Res 116:251–263

    PubMed Central  PubMed  Google Scholar 

  • van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105:604–617

    Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000a) Photosynthetic Excitons. World Scientific Publishers, London

    Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000b) Migration of localized excitons: Förster excitation transfer and trapping by reaction center. Photosynthetic Excitons. World Scientific Publishers, London, pp 401–448

    Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000c) Exciton energy transfer and trapping. Experiments. Photosynthetic Excitons. World Scientific Publishers, London, pp 449–478

    Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811:147–195

    Google Scholar 

  • van Grondelle R, Gobets B (2004) Transfer and trapping of excitations in plant photosystems. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 107–132

    Google Scholar 

  • van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8:793–807

    PubMed  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65

    CAS  Google Scholar 

  • Van Oort B, Alberts M, de Bianchi S, Dall’Osto L, Bassi R, Trinkunas G, Croce R, van Amerongen H (2010) Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys J 98:922–931

    PubMed Central  PubMed  Google Scholar 

  • van Zandvoort MAMJ, Wróbel D, Lettinga P, van Ginkel G, Levine YK (1995) Chlorophylls in polymers. I. State of chlorophyll a in unstretched polymer systems. Photochem Photobiol 62:279–289

    Google Scholar 

  • Vasil’ev S, Orth P, Zouni A, Owens TG, Bruce D (2001) Excited-state dynamics in photosystem II: insights from the x-ray crystal structure. Proc Natl Acad Sci USA 98:8602–8607

    PubMed Central  PubMed  Google Scholar 

  • Visscher KJ, Bergstrom H, Sundström V, Hunter CN, van Grondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy. Photosynth Res 22:211–217

    CAS  PubMed  Google Scholar 

  • Vredenberg WJ (2004) System analysis and photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of photosystem II: a challenging view. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 133–172

    Google Scholar 

  • Wahadoszamen M, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766

    CAS  PubMed  Google Scholar 

  • Wasielewski MR, Johnson DG, Seibert M, Govindjee (1989) Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution. Proc Natl Acad Sci USA 86:524–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to “energy”-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894:198–208

    CAS  Google Scholar 

  • Weiss C (1978) Electronic absorption spectra of chlorophylls. In: Dolphin D (ed) The Porphyrins, Volume 3: Physical Chemistry, Part A. Academic, New York, pp 211–223

    Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 117:11200–11208

    CAS  PubMed  Google Scholar 

  • Willock D (2009) Molecular Symmetry. Wiley, Chichester

    Google Scholar 

  • Wohlleben W, Buckup T, Hashimoto H, Cogdell RJ, Herek JL, Motzkus M (2004) Pump−deplete−probe spectroscopy and the puzzle of carotenoid dark states. J Chem Phys B 108:3320–3325

    CAS  Google Scholar 

  • Wraight CA, Clayton RK (1974) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim Biophys Acta 333:246–260

    CAS  PubMed  Google Scholar 

  • Yang M, Damjanović A, Vaswani HM, Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85:140–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshizawa M, Kosumi D, Komukai M, Hashimoto H (2006) Ultrafast optical responses of three-level systems in beta-carotene: resonance to a high-lying n(1)a(g)(-) excited state. Laser Phys 16:325–330

    CAS  Google Scholar 

  • Zahlan AB (1967) The Triplet States. Cambridge University Press, New York

    Google Scholar 

  • Zgierski MZ (1974) Herzberg-Teller interaction and vibronic coupling in molecular crystals. II. The simple model with inclusion of a frequency change in the non-totally symmetric vibration. Phys Status Solidi (B) 62:51–55

    CAS  Google Scholar 

  • Zubik M, Luchowski R, Grudzinski W, Gospodarek M, Gryczynski I, Gryczynski Z, Dobrucki JW, Gruszecki WI (2011) Light-induced isomerization of the LHCII-bound xanthophyll neoxanthin: possible implications for photoprotection in plants. Biochim Biophys Acta 1807:1237–1243

    CAS  PubMed  Google Scholar 

  • Zucchelli G, Brogioli D, Casazza AP, Garlaschi FM, Jennings RC (2007) Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms. Biophys J 93:2240–2254

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank R. van Grondelle and H. van Amerongen for their suggestions and critical comments. Authors also acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Defense Advanced Research Projects Agency (DARPA, QuBE) for financial support. Govindjee acknowledges the support and friendship of the photosynthesis community at large.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Scholes .

Editor information

Editors and Affiliations

Additional information

Dedication

This chapter is dedicated to the late Professor Robert M. Clegg (July 18, 1945 — October 15, 2012) of the University of Illinois at Urbana-Champaign (UIUC). He was a pioneer of the physics of living cells, and a world leader in fluorescence lifetime-resolved imaging microscopy (FLIM) of biological systems. He was an authority on fluorescence spectroscopy and rapid kinetic methods as applied to biological systems. Bob was a great human being, an intellectual, a “living library” to his students and his colleagues, a “connoisseur” of creative literature (not only in English, but in French and German as well), a historian of science, a great teacher, a poet, a storyteller, a great chef of diverse cuisine for friends and family, and a friend to all with whom he associated. One of us (Govindjee) was fortunate to have worked with him since he came to UIUC; they used FLIM in studying photoprotection against excess light in the green alga Chlamydomonas reinhardtii, and in avocado, a higher plant.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ostroumov, E.E., Khan, Y.R., Scholes, G.D., Govindjee (2014). Photophysics of Photosynthetic Pigment-Protein Complexes. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_4

Download citation

Publish with us

Policies and ethics