Skip to main content
Log in

The velocity of conduction in nerve fiber and its electric characteristics

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The theory developed in this paper shows that the propagation of spike potential along a nerve fiber and the conduction of an electric wave along an inert inorganic conductor follow a common quantitative relationship. This result gives further support to the belief that propagation of excitation is an electrical process. The basic idea of the theory is derived from the consideration that velocity has, by its mathematical definition, a local meaning; conduction in a nerve is completely determined by the local characteristics of the latter, as well as those of the wave. The final formula derived does not make use of any other field of science beyond the fundamental principles of electricity. It gives the conduction velocity in terms of the electric characteristics of the fiber and of the duration of the spike potential. The formula is in agreement with the known dependence of the conduction velocity on various parameters characterizing the axon. The computed velocity agrees with the measured ones on the squid giant axon, crab nerve axon, frog muscle fiber and Nitella cell. The membrane inductance appears as a velocity controling agent which prevents also a possible distortion of the spike potential during conduction. The structural meaning of the electric characteristics of the axon membrane is discussed from the viewpoint of the diffusion theory. A formula for the velocity of spread of the electrotonus is also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arnell, N. 1936. “Untersuchung über die Dicke des Achsenzylinders und der Markscheide in nicht fixierten Spinalnerven des Menschen und des Hundes.”Acta Psychiat. et Neurol.,11, 5–25.

    Article  Google Scholar 

  • Auger, D. 1933. “Contribution à l'étude de la propagation de la variation électrique chez les Characées.”Compt. rend. Soc. biol.,113, 1437–40.

    Google Scholar 

  • Bartlett, J. H. 1948. “Comparison of Transients in Inorganic Systems with those in Plant and Nerve Cells.”Jour. Cell. and Comp. Physiol.,32, 1–29.

    Article  Google Scholar 

  • Bear, R. S., F. O. Schmitt and J. Z. Young. 1937. “The Sheath components of the giant nerve fibers of the squid.”Proc. Roy. Soc. London,B123, 496–504.

    Google Scholar 

  • Blinks, L. R. 1930. “The direct current resistance in Nitella.”Jour. Genl. Physiol.,13, 495–508.

    Article  Google Scholar 

  • Bogue, J. Y. and H. Rosenberg. 1934. “The rate of development and spread of electrotonus.”Jour. Physiol.,82, 353–68.

    Google Scholar 

  • Cole, K. S. 1941. “Rectification and Inductance in the Squid Giant axon.”Jour. Genl. Physiol.,25, 29–51.

    Article  Google Scholar 

  • — 1947.Four Lectures on Biophysics. Rio de Janeiro: Instituto de Biofisica.

    Google Scholar 

  • — 1949. “Some Physical Aspects of bioelectric phenomena.”Proc. Nat. Acad. Sci.,35, 558–66.

    Article  Google Scholar 

  • Cole, K. S. and R. F. Baker 1941. “Longitudinal impedance of the squid giant axon.”Jour. Gen. Physiol.,24, 771–88.

    Article  Google Scholar 

  • Cole, K. S. and H. J. Curtis 1938. “Electric impedance of Nitella during activity.”Jour. Gen. Physiol.,22, 37–64.

    Article  Google Scholar 

  • — 1939. “Electric impedance of the squid giant axon during activity.”Ibid.,,22, 649–70.

    Article  Google Scholar 

  • — 1940. “Membrane potential of the squid giant axon during current flow.”Ibid.,,24, 551–63.

    Article  Google Scholar 

  • — 1950. “Bioelectricity: Electric Physiology.”Handbook of Medical Physics (Ed. O. Glasser), Vol. 2, Chicago: Year Book Publishers.

    Google Scholar 

  • Cole, K. and A. Hodgkin. 1939. “Membrane and protoplasm resistance in the squid giant axon.”Jour. Gen. Physiol.,22, 671–87.

    Article  Google Scholar 

  • Curtis, H. J. and K. S. Cole. 1937. “Transverse electric impedance of Nitella.”Jour. Genl. Physiol.,21, 189–201.

    Article  Google Scholar 

  • —. 1944. “Nerve: Excitation and Propagation.”Handbook of Medical Physics (Ed. O. Glasser). Chicago: Year Book Publishers.

    Google Scholar 

  • — 1950. “Nervous system: Excitation and Propagation of Nerve.”Handbook of Medical Physics (Ed. O. Glasser). Chicago: Year Book Publishers.

    Google Scholar 

  • Davis, L., Jr. and R. Lorente de Nò. 1947. “Contributions to the mathematical theory of the electrotonus.”Studies from the Rockefeller Inst. for Med. Res.,131, 442–96.

    Google Scholar 

  • Davson, H. and J. F. Danielli. 1943.The Permeability of Natural Membranes. New York: Macmillan.

    Google Scholar 

  • Eccles, J. C. 1948. “Conduction and Synaptic Transmission in the Nervous System.”Ann. Rev. Physiol.,10, 93–116.

    Article  Google Scholar 

  • Gasser, H. S. 1941. “The classification of nerve fibers.”Ohio. Jour. Sci.,41, 145–159.

    Google Scholar 

  • Gasser, H. S. and H. Grundfest. 1939. “Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fiber.”Am. Jour. Physiol.,127, 393–414.

    Google Scholar 

  • Grundfest, H. 1940. “Bioelectric potentials.”Ann. Rev. Physiol.,2, 213–42.

    Article  Google Scholar 

  • — 1947. “Bioelectric potentials in the nervous system and in muscle.”Ibid.,,9, 477–506.

    Article  Google Scholar 

  • Grundfest, H. and H. S. Gasser. 1938. “Properties of mammalian nerve fibers of slowest conduction.”Am. Jour. Physiol.,123, 307–18.

    Google Scholar 

  • Hill, S. E. and W. J. V. Osterhout 1935. “Nature of the action current in Nitella.”Jour. Gen. Physiol.,18, 377–83.

    Article  Google Scholar 

  • Hodgkin, A. L. 1939. “The relation between conduction velocity and the electrical resistance outside of a nerve fiber.”Jour. Physiol.,94, 560–70.

    Google Scholar 

  • — 1947a. “The membrane resistance of a non-medullated nerve fibre.”Ibid.,,106, 305–18.

    Google Scholar 

  • — 1947b. “The effect of potassium on the surface membrane of an isolated axon.”Ibid.,,106, 319–40.

    Google Scholar 

  • Hodgkin, A. L. and W. A. H. Rushton. 1946. “The electrical constants of a crustacean nerve fibre.”Proc. Roy. Soc. London, B,133, 444–79.

    Google Scholar 

  • Hursh, J. B. 1939. “Conduction velocity and diameter of nerve fibers.”Am. Jour. Physiol.,127, 131–39.

    Google Scholar 

  • Katz, B. 1947. “The effect of electrolyte deficiency on the rate of conduction in a single nerve fibre.”Jour. Physiol.,106, 411–17.

    Google Scholar 

  • — 1948. “The electrical properties of the muscle fibre membrane.”Proc. Roy. Soc. London,135 B, 506–34.

    Google Scholar 

  • Kiss, F. and P. Mihálik 1928. “Über die Zusammensetzung der peripherischen Nerven.”Z. f. Anat. u. Entwickl.,88, 112–51.

    Google Scholar 

  • Knowlton, E. A. 1949.Standard Handbook for Electrical Engineers. 8th Ed. New York: McGraw Hill.

    Google Scholar 

  • Lloyd, D. P. C. 1947. “Principles of Nervous and Muscular Activity.” Textbook of Physiology (Howell-Fulton). 15th Ed. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  • Offner, F., A. Weinberg and G. Young 1940. “Nerve Conduction Theory: Some Mathematical Consequences of Bernstein's model.”Bull. Math. Biophysics,2, 89–103.

    Article  MathSciNet  Google Scholar 

  • Opatowski, I. 1950a. “On Blair's theory of excitation and the role of internal energy sources.”Bull. Math. Biophysics,12, 123–33.

    Google Scholar 

  • Opatowski, I. 1951. “On the mathematical theories of excitation.”Ibid. Bull. Math. Biophysics.13, March.

  • Osterhout, W. J. V. 1935. “Nature of the action current in Nitella.”Jour. Gen. Physiol.,18, 215–27.

    Article  Google Scholar 

  • — 1936. “Electrical Phenomena in Large Plant Cells.”Physiol. Rev.,16, 216–37.

    Google Scholar 

  • — 1943. “Nature of the action current in Nitella.”Jour. Gen. Physiol.,27, 61–7.

    Article  Google Scholar 

  • Osterhout, W. J. V. and S. E. Hill. 1940. “Action curves with single peaks in Nitella in relation to the movement of potassium.”Jour. Gen. Physiol.,23, 743–51.

    Article  Google Scholar 

  • Pender, H. and S. R. Warren 1943.Electric circuits and fields. New York: McGraw-Hill.

    Google Scholar 

  • Planck, M. 1890. “Über die Erregung von Electricität und Wärme in Electrolyten.”Ann. d. Physik. u. Chem.,39, 161–86.

    Google Scholar 

  • Pond, S. E. 1921. “Correlation of the propagation velocity of the contraction wave in muscle with the electrical conductivity of the surrounding medium.”Jour. Genl. Physiol.,3, 807–26.

    Article  Google Scholar 

  • Pumphrey, R. J. and J. Z. Young. 1938. “The rates of conduction of nerve fibers of various diameters in Cephalopods.”Jour. Exp. Biol.,15, 453–66.

    Google Scholar 

  • Rashevsky, N. 1933. “Some physico-mathematical aspects of nerve conduction.”Physics,4, 341–9.

    Article  MATH  Google Scholar 

  • — 1948.Mathematical Biophysics. Revised Edition. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Rosa, E. B. and F. W. Grover 1912. “Formulas and Tables for the Calculation of mutual and self-inductance.”Bureau Standards Bull,8, 1–237.

    Google Scholar 

  • Rosenberg, H. 1937. “Electrotonus and Excitation in Nerve.”Proc. Roy. Soc. London, B,124, 308–36.

    Google Scholar 

  • Rosenberg, H. and F. Schnauder. 1923. “Der scheinbare Widerstand verschieden langer Strecken und das Kernhüllenverhältnis des Froschnerven.”Z. f. Biol.,78, 175–93.

    Google Scholar 

  • Rosenblueth, A., N. Wiener, W. Pitts and J. Garcia Ramos. 1948. “An account of the spike potential of axons.”Jour. Cell. and Comp. Physiol.,32, 275–317.

    Article  Google Scholar 

  • Rushton, W. A. H. 1937. “Initiation of the propagated disturbance.”Proc. Roy. Soc. London, B,124, 210–43.

    Article  Google Scholar 

  • Sanders, F. K. 1948. “The thickness of the myelin sheaths of normal and regenerating peripheral nerve fibres.”Proc. Roy. Soc. London,B135 323–357.

    Google Scholar 

  • Sanders, F. K. and D. Whitteridge 1946. “Conduction velocity and myelin thickness in regenerating nerve fibers.”Jour. Physiol.,105, 152–74.

    Google Scholar 

  • Schmitt, F. O. and R. S. Bear 1937. “The optical properties of vertebrate nerve axons as related to fiber size.”Jour. Cell. and Comp. Physiol.,9, 261–73.

    Article  Google Scholar 

  • — 1939. “The ultrastructure of the nerve axon sheath.”Biol. Rev.,14, 27–50.

    Google Scholar 

  • Taylor, G. W. 1940. “The optical properties of the earthworm giant fiber sheath as related to fiber size.”Jour. Cell. and Comp. Physiol.,15, 363–86.

    Article  Google Scholar 

  • — 1941. “The optical properties of the shrimp nerve fiber sheath.”Ibid.,,18, 233–42.

    Article  Google Scholar 

  • — 1942. “The correlation between sheath birefringence and conduction velocity with special reference to earthworm fibers.Ibid.,20, 359–72.

    Article  Google Scholar 

  • — 1943. “Sheath birefringence as related to fiber size and conduction velocity of catfish, Mauthner Müller and peripheral fibers.”Ibid.,,21, 281–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opatowski, I. The velocity of conduction in nerve fiber and its electric characteristics. Bulletin of Mathematical Biophysics 12, 277–302 (1950). https://doi.org/10.1007/BF02477900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477900

Keywords

Navigation