Skip to main content
Log in

The driving force for solute retention in electron donor-acceptor chromatography: Electrostatic versus charge-transfer interactions

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Charge-transfer interactions are often assumed to be dominant among the noncovalent interactions that govern the solute retention in electron donor-acceptor chromatography. This popular view, however, has been called into question by recent studies that suggest an important role for electrostatic interactions in the formation of donor-acceptor complexes. We reported here an experimental investigation concerning the question as to whether charge-transfer or electrostatic interactions are the driving force for solute retention in donor-acceptor chromatography. Using three chromatographic systems composed of a dinitrobenzene derived stationary phase and a hexane based mobile phase, we determined retention factors for a range of aliphatic and aromatic hydrocarbons and correlated them with molecular properties that describe the solute's dispersion, charge-transfer, and electrostatic characteristics. It was found that the molecular polarizability and ionization potential give either very poor or no correlation with solute retention whereas the molecular quadrupole moment is a linear function of the logarithmic retention factor. These results were interpreted as showing that electrostatic, rather than charge-transfer or dispersion, interactions play a major role in determining solute retention. The dominance of the electrostatic interactions over the other noncovalent interactions was discussed in terms of distance dependency of the interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. P. Yan, Y. W. Wu, Y. L. Sun, J. Chromatogr. A724, 337 (1996).

    Article  CAS  Google Scholar 

  2. G. Felix, A. Thienpont, P. Dentraygues, Chromatographia34, 177 (1992).

    Article  CAS  Google Scholar 

  3. D. M. Cox, S. Behal, M. Disko, S.M. Gorun, M. Greaney, C. S. Hus, E. B. Kollin, J. Millar, J. Robbins, R. D. Sherwood, P. Tindall, J. Am. Chem. Soc.113, 2940 (1991).

    Article  CAS  Google Scholar 

  4. K. Yamamoto, H. Funasaka, T. Takabshi, T. Akasaka, J. Phys. Chem.98, 2008 (1994).

    Article  CAS  Google Scholar 

  5. K. Kimata, T. Hirose, K. Moriuchi, K. Hosoya, T. Araki, N. Tanaka, Anal. Chem.67, 2556 (1995).

    Article  CAS  Google Scholar 

  6. D. Fuchs, H. Reitschel, R. H. Michel, A. Fischer, P. Weis, M. M. Kappers, J. Phys. Chem.100, 725 (1996).

    Article  CAS  Google Scholar 

  7. G. Felix, C. Bertrand, JRC & CC7, 160 (1984).

    CAS  Google Scholar 

  8. L. Nondek, R. Ponec, J. Chromatogr.294, 175 (1984).

    Article  CAS  Google Scholar 

  9. L. Nondek, J. Chromatogr.373, 61 (1986).

    Article  CAS  Google Scholar 

  10. M. R. Battaglia, A. D. Buckingham, J. H. Williams, Chem. Phys. Letters78, 421 (1981).

    Article  CAS  Google Scholar 

  11. A. Chablo, D. W. J. Cruickshank, A. Hinchliffe, R. W. Munn, Chem. Phys. Letters78, 425 (1981).

    Google Scholar 

  12. S. L. Price, Chem. Phys. Letters114, 359 (1985).

    Article  CAS  Google Scholar 

  13. J. Hernandez-Trujillo, A. Vela, J. Phys. Chem.100, 6524 (1996).

    Article  CAS  Google Scholar 

  14. L. Nondek, M. Minarik, J. Chromatogr.324, 261 (1985).

    Article  CAS  Google Scholar 

  15. K. J. Miller, J. A. Savchik, J. Am. Chem. Soc.101, 7206 (1979).

    Article  CAS  Google Scholar 

  16. D. R. Lide, Editor-in-Chief, “CRC Handbook of Chemistry and Physics”, 73rd Edn., CRC Press, Boca Raton, 1992.

    Google Scholar 

  17. M. Rigby, E. B. Smith, W. A. Wakeham, G. C. Maitland, “The Forces between Molecules”, Clarendon, Oxford, 1986.

  18. Q.-H. Wan, L. Ramaley, R. Guy, Anal. Chem.69, 4581 (1997).

    Article  CAS  Google Scholar 

  19. R. Foster, “Organic Charge-Transfer Complexes”, Academic Press, London and New York, 1969.

    Google Scholar 

  20. K. Morokuma, Acc. Chem. Res.10, 294 (1977).

    Article  CAS  Google Scholar 

  21. F. Cozzi, M. Cinquini, R. Annuziata, J. S. Siegel, J. Am. Chem. Soc.115, 5330 (1993).

    Article  CAS  Google Scholar 

  22. N. M. Brown, F. Swinton, J. Chem. Soc. Chem. Comm. 770 (1974).

  23. A. W. Schwabacher, S. Zhang, W. Davy, J. Am. Chem. Soc.115, 6995 (1993).

    Article  CAS  Google Scholar 

  24. Q.-H. Wan, L. Ramaley, R. Guy, Chromatographia46, 495 (1997).

    CAS  Google Scholar 

  25. C. A. Hunter, J. Mol. Biol.230, 1025 (1993).

    Article  CAS  Google Scholar 

  26. D. A. Dougherty, Science271, 163 (1996).

    CAS  Google Scholar 

  27. M. Luhmer, K. Bartik, A. Dejaegere, P. Bovy, J. Reisse, Bull. Soc. Chim. Fr.131, 603 (1994).

    CAS  Google Scholar 

  28. J. H. Williams, Acc. Chem. Res.26, 593 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor John H. Knox on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Q.H., Ramaley, L. & Guy, R. The driving force for solute retention in electron donor-acceptor chromatography: Electrostatic versus charge-transfer interactions. Chromatographia 48, 523–528 (1998). https://doi.org/10.1007/BF02466644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02466644

Key Words

Navigation