Skip to main content
Log in

Applications of the solvation parameter model in thin-layer chromatography

  • Review
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

The limited capability of the solvation parameter model to describe retention for silica gel layers and columns is possibly due to problems in separating out the simultaneous contributions of solute and solvent adsorption interactions to the experimental retention property (logk or RM) as well as possible limitations of the descriptors employed by the model to represent interactions at the adsorbent surface. The heterogeneous energy distribution of adsorption sites that result in site-specific interactions and the steric requirements associated with immobile sites for solute adsorption in the preferred configuration at the adsorbent surface are not easily handled for varied compounds. The separate solute, S°, and solvent adsorption parameters, ε°, of the competition model can be modeled independently with reasonable success, so to the experimental values of the solute adsorption cross-sectional area, AS. On the other hand, the definitions of S° and AS in the competition model are difficult to reconcile with their properties indicated by the solvation parameter model. This suggests co-mingling of solute and solvent properties among the main parameters of the competition model leading to additional uncertainty in model predictions for varied compounds. The reduction in the contribution of site-specific and steric interactions to the retention mechanism for reversed-phase separations on chemically bonded layers together with the formation of a more extensive solvated interphase region provides a more favorable fit of the solvation parameter model for both layers and columns. These models emphasize the importance of water in the mobile phase and the general contributions of mobile phase interactions on the retention mechanism. In addition, the selected solvation of the stationary phase in contact with the mobile phase makes an important contribution to system selectivity. System maps are developed to provide insight into the contribution of individual intermolecular interactions to the retention mechanism for a wide range of mobile phase compositions. Correlation diagrams constructed from the system constants facilitate the comparison of selectivity for different layers with the same mobile phase composition or different mobile phase compositions for the same layer. These visual tools provide an objective mechanism for the evaluation of differences in selectivity and the identification of systems of equivalent selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abraham MH (1993) Scales of solute hydrogen-bonding: their construction and approach to physicochemical and biochemical processes. Chem Soc Revs 22:73–83

    Article  CAS  Google Scholar 

  2. Abraham MH, Poole CF, Poole SK (1999) Classification of stationary phases and other materials by gas chromatography. J Chromatogr A 842:79–114

    Article  CAS  Google Scholar 

  3. Abraham MH, Ibrahim A, Zissimos AM (2004) Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A 1037:29–47

    Article  CAS  PubMed  Google Scholar 

  4. Poole CF, Ariyasena TC, Lenca N (2013) Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A 1317:85–104

    Article  CAS  PubMed  Google Scholar 

  5. Poole CF, Atapattu SN, Bell AK (2009) Determination of solute descriptors by chromatographic methods. Anal Chim Acta 652:32–53

    Article  CAS  PubMed  Google Scholar 

  6. Poole CF (2020) Wayne State University experimental descriptor database for use with the solvation parameter model. J Chromatogr A 1617:460841

    Article  CAS  PubMed  Google Scholar 

  7. Poole CF (2022) Structural effects on the hydrogen-bonding descriptors of the solvation parameter model. J Sol Chem (in press). https://doi.org/10.1007/s10953-021-01133-z

    Article  Google Scholar 

  8. Abraham MH, Platts JA, Hersey A, Leo AJ, Taft RW (1999) Correlation and estimation of gas-chloroform and water-chloroform partition coefficients by a linear free energy relationship method. J Pharm Sci 88:670–679

    Article  CAS  PubMed  Google Scholar 

  9. Sprunger LM, Gibbs J, Acree WE, Abraham MH (2008) Correlation and prediction of partition coefficients for solute transfer to 1,2-dichloroethane from both water and from the gas phase. Fluid Phase Equilibr 273:78–86

    Article  CAS  Google Scholar 

  10. Abraham MH, Chadha HS, Whiting GS, Mitchell RC (1994) Hydrogen bonding 32. An analysis of water-octanol and water-alkane partitioning and the Δlog P parameter of Seller. J Pharm Sci 83:1085–1100

    Article  CAS  PubMed  Google Scholar 

  11. Poole CF (2017) Partition constant database for totally organic biphasic systems. J Chromatogr A 1527:18–32

    Article  CAS  PubMed  Google Scholar 

  12. Bolliet D, Poole CF (1997) Influence of solvent effects on retention for a porous polymer sorbent in reversed phase liquid chromatography. Chromatographia 46:381–398

    Article  CAS  Google Scholar 

  13. Poole CF, Gunatilleka AD, Sethuraman R (2000) Contributions of theory to method development in solid-phase extraction. J Chromatogr A 885:17–39

    Article  CAS  PubMed  Google Scholar 

  14. Dias NC, Poole CF (2002) Mechanistic study of the sorption properties of Oasis HLB and its use in solid-phase extraction. Chromatographia 56:269–275

    Article  CAS  Google Scholar 

  15. Poole CF, Poole SK (2002) Column selectivity from the perspective of the solvation parameter model. J Chromatogr A 965:263–299

    Article  CAS  PubMed  Google Scholar 

  16. Vitha MF, Carr PW (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–194

    Article  CAS  PubMed  Google Scholar 

  17. Poole CF (2019) Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J Chromatogr A 1604:460482

    Article  CAS  PubMed  Google Scholar 

  18. Poole CF (2019) Gas chromatography system constant database over an extended temperature range for nine open-tubular columns. J Chromatogr A 1590:130–145

    Article  CAS  PubMed  Google Scholar 

  19. Poole CF, Atapattu SN (2021) Determination of physicochemical properties of ionic liquids by gas chromatography. J Chromatogr A 1644:461964

    Article  CAS  PubMed  Google Scholar 

  20. Abraham MH, Roses M (1994) Hydrogen bonding. 38. Effect of solute structure and mobile phase composition on reversed-phase high-performance liquid chromatographic capacity factors. J Phys Org Chem 7:672–684

    Article  CAS  Google Scholar 

  21. Tan LC, Carr PW, Abraham MH (1996) Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships 1. The stationary phase J Chromatogr A 752:1–18

    Article  CAS  Google Scholar 

  22. Abraham MH, Roses M, Poole CF, Poole SK (1977) Hydrogen bonding 42. Characterization or reversed-phase high-performance liquid chromatographic C18 stationary phases. J Phys org Chem 10:358–368

    Article  Google Scholar 

  23. Poole CF, Lenca N (2017) Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 1486:2–19

    Article  CAS  PubMed  Google Scholar 

  24. Poole CF (2018) Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography. J Chromatogr B 1092:207–219

    Article  CAS  Google Scholar 

  25. Poole CF (2019) Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. J Chromatogr A 1600:112–126

    Article  CAS  PubMed  Google Scholar 

  26. Poole CF, Atapattu SN (2020) Selectivity evaluation of core-shell silica columns for reversed-phase liquid chromatography using the solvation parameter model. J Chromatogr A 1634:461692

    Article  CAS  PubMed  Google Scholar 

  27. Subirats X, Abraham MH, Roses M (2019) Characterization of hydrophilic interaction liquid chromatography retention by linear free energy relationships. Comparison to reversed- and normal-phase retentions. Anal Chim Acta 1092:132–143

    Article  CAS  PubMed  Google Scholar 

  28. Vitha MF, Carr PW (1998) A linear solvation energy relationship study of the effect of surfactant chain length on the chemical interactions governing retention and selectivity in micellar electrokinetic capillary chromatography using sodium alkyl sulfate elution buffers. Sep Sci Technol 33:2075–2100

    Article  CAS  Google Scholar 

  29. Roses M, Rafols C, Bosch E, Martinez AM, Abraham MH (1999) Solute-solvent interactions in micellar electrokinetic chromatography. J Chromatogr A 845:217–226

    Article  CAS  PubMed  Google Scholar 

  30. Fuguet E, Rafols C, Bosch E, Abraham MH, Roses M (2002) Solute-solvent interactions in micellar electrokinetic chromatography. J Chromatogr A 942:237–248

    Article  CAS  PubMed  Google Scholar 

  31. Poole SK, Poole CF (2008) Quantitative structure–retention (property) relationships in micellar electrokinetic chromatography. J Chromatogr A 1182:1–24

  32. West C, Lemasson E, Lesellier E (2016) An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J Chromatogr A 1440:212–228

    Article  CAS  PubMed  Google Scholar 

  33. Poole CF, Gunatilleka AD, Poole SK (2000) In search of a chromatographic model for biopartitioning. Adv Chromatogr 40:159–230

    CAS  PubMed  Google Scholar 

  34. Endo S, Goss K-U (2014) Application of polyparameter linear free energy relationships in environmental chemistry. Environ Sci Technol 48:12477–12491

    Article  CAS  PubMed  Google Scholar 

  35. Poole CF, Dias NC (2000) Practitioner’s guide to method development in thin-layer chromatography. J Chromatogr A 892:123–142

    Article  CAS  PubMed  Google Scholar 

  36. Fanali F, Haddad PR, Poole CF, Riekkola M-L (2017) (ed) Liquid chromatography: applications, 2 nd. edn. Elsevier, Amsterdam

  37. Spangenberg B, Poole CF, Weins Ch (2011) Quantitative thin-layer chromatography: a practical survey. Springer-Verlag, Berlin

    Book  Google Scholar 

  38. Poole CF (ed) (2015) Instrumental thin-layer chromatography. Elsevier, Amsterdam

    Google Scholar 

  39. Snyder LR (1969) Principles of adsorption chromatography. Marcel Dekker, New York

    Google Scholar 

  40. Geiss F (1987) Fundamentals of thin layer chromatography. Huethig, Heidelberg

    Google Scholar 

  41. Zapala W, Waksmundzka-Hajnos M (2004) Retention process in normal-phase TLC systems. J Liq Chromatogr Rel Technol 27:2127–2141

    Article  CAS  Google Scholar 

  42. Borowkoz M, Oscik-Mendyk B (2005) Adsorption model for retention in normal-phase liquid chromatography with binary mobile phases. Adv Colloid Interface Sci 118:113–124

    Article  CAS  Google Scholar 

  43. Martire DE, Boehm RE (1980) Molecular theory of liquid adsorption chromatography. J Liq Chromatogr 3:753–744

    Article  CAS  Google Scholar 

  44. Martire DE (1988) Unified theory of adsorption chromatography with heterogeneous surfaces: gas, liquid and supercritical fluid mobile phases. J Liq Chromatogr 11:17–30

    Article  Google Scholar 

  45. Jaroniec M, Martire DE (1986) A general model of liquid solid chromatography with mixed mobile phases involving concurrent adsorption and partition effects. J Chromatogr 351:1–16

    Article  CAS  Google Scholar 

  46. Jaroniec M, Gilpin RK (1991) Theory of liquid solid adsorption chromatography with mixed eluents on energetically heterogeneous adsorbents. Langmuir 7:1784–1790

    Article  CAS  Google Scholar 

  47. Wu D, Lucy CA (2016) Study of the slope of the linear relationship between retention and mobile phase composition (Snyder-Soczewinski model) in normal phase liquid chromatography with bonded and charge-transfer phases. J Chromatogr A 1475:31–40

    Article  CAS  PubMed  Google Scholar 

  48. Snyder LR (2012) Localization in adsorption chromatography. J Planar Chromatogr 25:184–189

    Article  CAS  Google Scholar 

  49. Snyder LR (2008) Solvent selectivity in normal-phase TLC. J Planar Chromatogr 21:315–323

    Article  CAS  Google Scholar 

  50. Oscik-Mendyk B, Borowko M (2002) Application of Soczewinski-type equation to study molecular interactions in liquid adsorption chromatography. Chromatographia 55:491–495

    Article  CAS  Google Scholar 

  51. Borowko M, Oscik-Mendyk B (2004) Prediction of retention in liquid–solid chromatography with ternary mobile phases. Chromatographia 60:51–57

  52. Oscik-Mendyk B (2005) Comparison of adsorption in liquid–solid chromatography on the basis of different models of retention. J Planar Chromatogr 18:199–202

  53. Scott RPW (1980) The silica gel surface and its interactions with solvent and solute in liquid chromatography. Adv Chromatogr 18:297–306

    CAS  Google Scholar 

  54. Scott RPW, Kucera P (1975) Solute interactions with mobile and stationary phases in liquid–solid chromatography. J Chromatogr 112:425–442

  55. Oros G, Cserhati T (2011) Determination of the free energy of adsorption and the surface area of adsorption of some carboxamide derivatives by normal-phase thin-layer chromatography. J Liq Chromatogr Rel Technol 34:785–790

    Article  CAS  Google Scholar 

  56. Soczewinski E (2002) Mechanistic molecular model of liquid–solid chromatography–retention–eluent composition relationships. J Chromatogr A 965:109–116

  57. Petrovic SM, Lomic SM, Sefer I (1987) Solute retention in the stationary phase of a liquid–solid chromatographic system. Chromatographia 23:915–924

  58. Petrovic SM, Spika M (1991) Effect of the mobile phase in retention in liquid–solid chromatography. J Liq Chromatogr 14:3061–3076

  59. Palamreva MD, Palamareva HE (1989) Micro computer-aided characterization of mobile phases for normal-phase liquid–solid chromatography based on Snyder’s theory and data. J Chromatogr 477:235–248

  60. Palamarev CE, Meyer VR, Polamareva MD (1999) New approach to the computer-assisted selection of mobile phases for high-performance liquid chromatography on the basis of the Snyder theory. J Chromatogr 848:1–8

    Article  CAS  Google Scholar 

  61. Park JH, Carr PW (1989) Interpretation of normal-phase solvent strength scales based on linear solvation energy relationships using solvatochromic parameters. J Chromatogr 465:235–248

    Article  Google Scholar 

  62. Li J, Robinson T (1999) Application of linear solvation energy relationships to guide selection of polar modifiers in normal-phase liquid chromatographic separations. Anal Chim Acta 395:85–99

    Article  CAS  Google Scholar 

  63. Cheong WJ, Choi JD (1997) Linear solvation energy relationships in normal phase liquid chromatography based on retention data on silica in 2-propanol/hexane eluents. Anal Chim Acta 342:51–57

    Article  CAS  Google Scholar 

  64. Poole CF (2005) Models for the adsorption of organic compounds at gas-water interfaces. J Environ Monit 7:577–580

    Article  CAS  PubMed  Google Scholar 

  65. Poole SK, Poole CF (1996) Sorption properties of styrene-divinylbenzene macroreticular porous polymers. Anal Commun 33:353–356

    Article  CAS  Google Scholar 

  66. Li Q, Poole CF (2000) Influence of interfacial adsorption on the system constants of the solvation parameter model in gas–liquid chromatography. Chromatographia 52:639–647

  67. Atapattu SN, Poole CF (2009) Models for the sorption of volatile organic compounds by diesel soot and atmospheric aerosols. J Environ Monit 11:815–822

    Article  CAS  PubMed  Google Scholar 

  68. Markowski W, Czapinska K, Poppe H (1983) Application of sandwich thin–layer chromatography to the evaluation of adsorption isotherms in liquid–solid systems. Chromatographia 17:221–227

  69. Dabrowski A, Jaroniec M (1990) Excess adsorption isotherms for solid-liquid systems and their analysis to determine the surface phase capacity. Adv Colloid Interface Sci 31:155–223

    Article  CAS  Google Scholar 

  70. Bernard-Savary P, Poole CF (2015) Instrument platforms for thin-layer chromatography. J Chromatogr A 1421:184–202

    Article  CAS  PubMed  Google Scholar 

  71. Kiridena W, Poole CF (1998) Influence of solute size and site-specific surface interactions on the prediction of retention in liquid chromatography using the solvation parameter model. Analyst 123:1265–1270

    Article  CAS  Google Scholar 

  72. Park JH, Yoon MH, Ryu YK, Kim BE, Ryu JW, Jang MD (1998) Characterization of some normal-phase liquid chromatographic stationary phases based on linear solvation energy relationships. J Chromatogr A 796:249–258

    Article  CAS  Google Scholar 

  73. Oumada FZ, Roses M, Bosch E, Abraham MH (1999) Solute-solvent interactions in normal-phase liquid chromatography: a linear free-energy relationship study. Anal Chim Acta 382:301–308

    Article  CAS  Google Scholar 

  74. Poole CF (2021) Solvation parameter model: tutorial on its application to separation systems for neutral compounds. J Chromatogr A 1645:462108

    Article  CAS  PubMed  Google Scholar 

  75. Poole CF (2020) Selection of calibration compounds for selectivity evaluation of siloxane-bonded silica columns for reversed-phase liquid chromatography by the solvation parameter model. J Chromatogr A 1633:461652

    Article  CAS  PubMed  Google Scholar 

  76. Li J, Whitman DA (1998) Characterization and selectivity optimization on diol, amino, and cyano normal phase columns based on linear solvation energy relationships. Anal Chim Acta 368:141–154

    Article  CAS  Google Scholar 

  77. Wu D, Jiang P, Lucy CA (2018) Linear solvation energy relationships (LSER) characterization of the normal phase retention mechanism on hypercrosslinked polystyrene. J Chromatogr A 1543:40–47

    Article  CAS  PubMed  Google Scholar 

  78. Wu D, Lucy CA (2017) Linear solvation energy relationships in normal phase chromatography based on gradient separations. J Chromatogr A 1516:64–70

    Article  CAS  PubMed  Google Scholar 

  79. Chu Y, Poole CF (2003) Possibility of calculating system maps using gradient elution reversed-phase liquid chromatography. Chromatographia 58:683–690

    CAS  Google Scholar 

  80. Poole SK, Poole CF (2011) High performance stationary phases for planar chromatography. J Chromatogr A 1218:2648–2660

    Article  CAS  PubMed  Google Scholar 

  81. Rabel F, Sherma J (2016) New TLC/HPTLC commercially prepared and laboratory prepared plates: A review. J Liq Chromatogr Rel Technol 39:385–393

    Article  CAS  Google Scholar 

  82. Fernando WPN, Poole CF (1990) The influence of layer porosity on the flow resistance and apparent particle size of thin layer chromatography plates. J Planar Chromatogr 3:389–395

    CAS  Google Scholar 

  83. Poole CF, Fernando WPN (1993) Comparison of the kinetic properties of commercially available precoated silica gel plates. J Planar Chromatogr 6:357–361

    CAS  Google Scholar 

  84. Fernando WPN, Poole CF (1992) Determination of the pore size distribution of precoated silica gel layers by size exclusion chromatography and forced flow development. J Planar Chromatogr 5:50–55

    Google Scholar 

  85. Dias NC, Poole CF (2001) Compliance of retention data on inorganic oxide adsorbents with the solvation parameter model. J Planar Chromatogr 14:160–174

    CAS  Google Scholar 

  86. Grey MJ, Mebane RC, Womack HM, Rybolt TR (1995) Molecular mechanics and molecular cross-sectional areas – a comparison with molecules adsorbed on solid surfaces. J Colloid Interface Sci 170:98–101

    Article  Google Scholar 

  87. Mebane RC, Schanley SA, Rybolt TR, Bruce CD (1999) The correlation of physical properties of organic molecules with computed molecular surface areas. J Chem Edu 76:688–693

    Article  CAS  Google Scholar 

  88. Poole SK, Poole CF (2001) A method for estimating the solvent strength parameter in liquid–solid chromatography. Chromatographia 53:S162–S166

  89. Poole CF, Poole SK (2009) Foundations of retention in partition chromatography. J Chromatogr A 1216:1530–1550

    Article  CAS  PubMed  Google Scholar 

  90. Studzinska S, Buszewski B (2012) Linear solvation energy relationships in the determination of specificity and selectivity of stationary phases. Chromatographia 75:1235–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Poole CF (2015) An interphase model for retention in liquid chromatography. J Planar Chromatogr 28:98–105

    Article  CAS  Google Scholar 

  92. Poole CF, Atapattu SN (2020) Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J Chromatogr A 1626:461427

    Article  CAS  PubMed  Google Scholar 

  93. den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR (2021) Recent applications of retention modelling in liquid chromatography. J Sep Sci 44:88–114

    Article  CAS  Google Scholar 

  94. Poole CF (2019) Influence of solvent effects on retention of small molecules in reversed-phase liquid chromatography. Chromatographia 82:49–64

    Article  CAS  Google Scholar 

  95. Poole CF (2020) Evaluation of the solvation parameter model as a quantitative structure- retention relationship model for gas and liquid chromatography. J Chromatogr A 1626:461308

    Article  CAS  PubMed  Google Scholar 

  96. Vailaya A, Horvath C (1998) Retention in reversed-phase liquid chromatography: partition or adsorption. J Chromatogr A 829:1–37

    Article  CAS  PubMed  Google Scholar 

  97. Tsui HW, Lin SZ, Hsu YC, Dai FJ (2022) Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography. J Chromatogr A 1662:462736

    Article  CAS  PubMed  Google Scholar 

  98. Jaroniec M (1993) Partition and displacement models in reversed-phase liquid chromatography with mixed eluents. J Chromatogr A 656:37–50

    Article  CAS  Google Scholar 

  99. Fornstedt T (2010) Characterization of adsorption processes in analytical liquid–solid chromatography. J Chromatogr A 1217:792–812

  100. Gritti F, Guiochon G (2006) Heterogeneity of the adsorption mechanism of low molecular weight compounds in reversed-phase liquid chromatography. Anal Chem 78:5823–5834

    Article  CAS  PubMed  Google Scholar 

  101. Buntz S, Figus M, Liu Z, Kazakevich YV (2012) Excess adsorption of binary aqueous organic mixtures on various reversed-phase packing materials. J Chromatogr A 1240:104–112

    Article  CAS  PubMed  Google Scholar 

  102. Bocian S, Vajda P, Felinger A, Buszewski B (2008) Solvent excess adsorption on the stationary phases for reversed-phase liquid chromatography with polar functional groups. J Chromatogr A 1204:35–41

    Article  CAS  PubMed  Google Scholar 

  103. Bolliet D, Poole CF (1998) Influence of temperature on retention and selectivity in reversed phase liquid chromatography. Analyst 123:295–299

    Article  CAS  Google Scholar 

  104. Kiridena W, Poole CF, Koziol WW (2004) Effect of solvent strength and temperature for a polar-endcapped octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases. J Chromatogr A 1060:177–185

    Article  CAS  PubMed  Google Scholar 

  105. Kiridena W, Poole CF (1998) Structure-driven retention model for optimization of ternary solvent systems in reversed-phase liquid chromatography. Chromatographia 48:607–614

    Article  CAS  Google Scholar 

  106. Bolliet D, Poole CF (1998) Mixture-design approach to retention prediction using the solvation parameter model and ternary solvent systems in reversed-phase liquid chromatography. Anal Commun 35:253–256

    Article  CAS  Google Scholar 

  107. Dias NC, Poole CF (2000) Optimization of ternary mobile phases in reversed-phase thin-layer chromatography by use of a mixture-design approach with the solvation-parameter model. J Planar Chromatogr 13:337–347

    CAS  Google Scholar 

  108. Carr PW, Dolan JW, Neue UD, Snyder LR (2011) Contributions to reverse-phase column selectivity. I Steric interactions J Chromatogr A 1218:1724–1749

    Article  CAS  PubMed  Google Scholar 

  109. Poole CF, Ahmed H, Kiridena DeKay WC, Koziol WW (2005) Contribution of steric repulsion to retention on an octadecylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography. Chromatographia 62:553–561

    Article  CAS  Google Scholar 

  110. Jost W, Hauck HE (1987) The use of modified silica gels in TLC and HPTLC. Adv Chromatogr 27:129–165

    CAS  PubMed  Google Scholar 

  111. Unger KK, Liapis AI (2012) Adsorbents and columns in analytical high-performance liquid chromatography: a perspective with regard to development and understanding. J Sep Sci 35:1201–1212

    Article  CAS  PubMed  Google Scholar 

  112. Poole CF, Karunasekara T (2012) Solvent classification for chromatography and extraction. J Planar Chromatogr 25:190–199

    Article  CAS  Google Scholar 

  113. Kiridena W, Poole CF (1999) Structure-driven retention model for method development in reversed-phase thin-layer chromatography on octadecylsiloxane-bonded layers. J Planar Chromatogr 12:13–25

    CAS  Google Scholar 

  114. Kiridena W, Poole CF (1998) Structure-driven retention model for solvent selection and optimization in reversed-phase thin-layer chromatography. J Chromatogr A 802:335–347

    Article  CAS  Google Scholar 

  115. Kiridena W, Poole CF (1997) Structure-driven retention optimization model for reversed phase thin-layer chromatography. Anal Commun 34:195–198

    Article  CAS  Google Scholar 

  116. Poole CF (1989) Solvent migration through porous layers. J Planar Chromatogr 2:95–98

    CAS  Google Scholar 

  117. Abraham MH, Poole CF, Poole SK (1996) Solute effects on reversed-phase thin-layer chromatography; A free energy relationship analysis. J Chromatogr A 749:201–210

    Article  CAS  Google Scholar 

  118. Walter TH, Iraneta P, Capparella P (2005) Mechanism of retention loss when C8 and C18 HPLC columns are used with highly aqueous mobile phases. J Chromatogr A 1075:177–183

    Article  CAS  PubMed  Google Scholar 

  119. Seibert DS, Poole CF (1995) Influence of solvent effects on retention in reversed-phase liquid chromatography and solid-phase extraction using a cyanopropylsiloxane-bonded, silica-based sorbent. Chromatographia 41:51–60

    Article  CAS  Google Scholar 

  120. Seibert DS, Poole CF, Abraham MH (1996) Retention properties of a spacer bonded propanediol sorbent for reversed-phase liquid chromatography and solid-phase extraction. Analyst 121:511–520

    Article  CAS  Google Scholar 

  121. Ali Z, Poole CF (2004) Insights into the retention mechanism of neutral organic compounds on polar chemically bonded stationary phases in reversed-phase liquid chromatography. J Chromatogr A 1052:100–204

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study. The author has no relevant financial or non-financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin F. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poole, C.F. Applications of the solvation parameter model in thin-layer chromatography. JPC-J Planar Chromat 35, 207–227 (2022). https://doi.org/10.1007/s00764-022-00156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-022-00156-6

Keywords

Navigation