Skip to main content

Advertisement

Log in

Cutaneous leishmaniasis: a model for analysis of the immunoregulation by accessory cells

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

In the mammalian host,Leishmania are obligate intracellular parasites and invade macrophages and Langerhans cells. The accessory functions of both types of host cells are important for regulation of the specific cellular immune response and involve the following activities: infiltration into the site of infection, initiation of a T cell response, maintenance of immunity and the effector mechanisms that control intracellular parasite replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebischer T (1994) Recurrent cutaneous leishmaniasis: a role for persistent parasites? Parasitol Today 10:25–28

    Article  PubMed  CAS  Google Scholar 

  2. Aebischer T, Moody S, Handman E (1993) Persistence of virulentLeishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect Immun 61:220–226

    PubMed  CAS  Google Scholar 

  3. Becker D, Reske-Kunz AB, Knop J, Reske K (1991) Biochemical properties of major histocompatibility complex class II molecules endogenously synthesized and expressed by mouse Langerhans cells. Eur J Immunol 21:1213–1220

    PubMed  CAS  Google Scholar 

  4. Blank C, Fuchs H, Rappersberger K, Röllinghoff M, Moll H (1993) Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis withLeishmania major. J Infect Dis 167:418–425

    PubMed  CAS  Google Scholar 

  5. Bogdan C, Gessner A, Röllinghoff M (1993) Cytokines in leishmaniasis: a complex network of stimulatory and inhibitory interactions. Immunobiology 189:356–396

    PubMed  CAS  Google Scholar 

  6. Britton WJ, Roche PW, Winter N (1994) Mechanisms of persistence of mycobacteria. Trends Microbiol 2:284–288

    Article  PubMed  CAS  Google Scholar 

  7. Croft M, Duncan DD, Swain SL (1992) Response of naive antigen-specific CD4+ T cells in vitro: characteristics and antigen-presenting cell requirements. J Exp Med 176:1431–1437

    Article  PubMed  CAS  Google Scholar 

  8. Devergne O, Marfaing-Koka A, Schall TT, Leger-Ravet M-B, Sadick M, Peuchmaur M, Crevon M-C, Kim T, Galanaud P, Emilie D (1994) Production of the RANTES chemokine in delayed-type hypersensitivity reactions: involvement of macrophages and endothelial cells. J Exp Med 179:1689–1694

    Article  PubMed  CAS  Google Scholar 

  9. Fahey TJ 3rd, Tracey KJ, Tekamp-Olson P, Cousens LS, Jones WG, Shires GT, Cerami A, Sherry B (1992) Macrophage inflammatory protein 1α modulates macrophage functions. J Immunol 148:2764–2769

    PubMed  CAS  Google Scholar 

  10. Fruth U, Solioz N, Louis JA (1993)Leishmania major interferes with antigen presentation by infected macrophages. J Immunol 150:1857–1864

    PubMed  CAS  Google Scholar 

  11. Gramiccia M, Gradoni L, Troiani M (1992) HIV-Leishmania co-infections in Italy. Isoenzyme characterization ofLeishmania causing visceral leishmaniasis in HIV patients. Trans R Soc Trop Med Hyg 86:161–163

    Article  PubMed  CAS  Google Scholar 

  12. Gray D, Matzinger P (1991) T cell memory is short-lived in the absence of antigens. J Exp Med 174:969–974

    Article  PubMed  CAS  Google Scholar 

  13. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. J Exp Med 169:59–72

    Article  PubMed  CAS  Google Scholar 

  14. Hill JO, Awwad M, North RJ (1989) Elimination of CD4+ suppressor T cells from susceptible BALB/c mice releases CD8+ T lymphocytes to mediate protective immunity againstLeishmania. J Exp Med 169:1819–1827

    Article  PubMed  CAS  Google Scholar 

  15. Ilg T, Stierhoff Y-D, McConville MJ, Overath P (1995) Purification, partial characterization and immunolocalization of a proteophosphoglycan secreted byLeishmania mexicana amastigotes. Eur J Cell Biol 66:205–215

    PubMed  CAS  Google Scholar 

  16. Inaba K, Steinman RM (1986) Accessory cell-T lymphocyte interactions: antigen dependent and independent clustering. J Exp Med 163:247–261

    Article  PubMed  CAS  Google Scholar 

  17. Kämpgen E, Koch N, Koch F, Ströger P, Heufler C, Schuler G, Romani N (1991) Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc Natl Acad sci USA 88:3014–3018

    Article  PubMed  Google Scholar 

  18. Kaye PM, Rogers NJ, Curry AJ, Scott JC (1994) Deficient expression of co-stimulatory molecules onLeishmania-infected macrophages. Eur J Immunol 24:2850–2854

    PubMed  CAS  Google Scholar 

  19. Kleijmeer MJ, Oorschot VMJ, Geuze HJ (1994) Human resident Langerhans cells display a lysosomal compartment enriched in MHC class II. J Invest Dermatol 103:516–523

    Article  PubMed  CAS  Google Scholar 

  20. Larsen CP, Ritchie SC, Hendrix R, Linsley PS, Hathcock KS, Hodes RJ, Lowry RP, Pearson TC (1994) Regulation of immuno-stimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol 152:5208–5219

    PubMed  CAS  Google Scholar 

  21. Lau LL, Jamieson BD, Somasundaram T, Ahmed R (1994) Cytotoxic T cell memory without antigen. Nature 369:648–652

    Article  PubMed  CAS  Google Scholar 

  22. Liew FY, O'Donnell CA (1993) Immunology of leishmaniasis. Adv Parasitol 32:161–259

    Article  PubMed  CAS  Google Scholar 

  23. Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N (1993) Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261:1448–1451

    PubMed  CAS  Google Scholar 

  24. Lukacs NW, Kunkel SL, Strieter RM, Warmington K, Chensue SW (1993) The role of macrophage inflammatory protein 1α inSchistosoma mansoni egg-induced granulomatous inflammation. J Exp Med 177:1551–1559

    Article  PubMed  CAS  Google Scholar 

  25. Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate J Exp Med 166:1654–1667

    Article  PubMed  CAS  Google Scholar 

  26. Milon G, Titus RG, Cerottini J-C, Marchal G, Louis JA (1986) Higher frequency ofLeishmania major-specific L3T4+ T cells in susceptible BALB/c as compared with resistant CBA mice. J Immunol 136:1467–1471

    PubMed  CAS  Google Scholar 

  27. Moll H (1993) Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol Today 14:383–387

    Article  PubMed  CAS  Google Scholar 

  28. Moll H, Fuchs H, Blank C, Röllinghoff M (1993) Langerhans cells transportLeishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 23:1595–1601

    PubMed  CAS  Google Scholar 

  29. Moll H, Flohé S, Röllinghoff M (1995) Dendritic cells inLeishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response. Eur J Immunol 25:693–699

    PubMed  CAS  Google Scholar 

  30. Müllbacher A (1994) The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J Exp Med 179:317–321

    Article  PubMed  Google Scholar 

  31. Müller I (1992) Role of T cell subsets during the recall of immunologic memory toLeishmania major. Eur J Immunol 22:3063–3069

    PubMed  Google Scholar 

  32. Müller I, Pedrazzini T, Kropf P, Louis JA, Milon G (1991) Establishment of resistance toLeishmania major infection in susceptible BALB/c mice requires parasite-specific CD8+ T cells. Int Immunol 6:587–597

    Google Scholar 

  33. Müller I, Kropf P, Etges RJ, Louis JA (1993) Gamma interferon response in secondaryLeishmania major infection: role of CD8+ T cells. Infect Immun 61:3730–3738

    PubMed  Google Scholar 

  34. Nathan CF, Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70

    Article  PubMed  CAS  Google Scholar 

  35. Oldstone MBA (1989) Viral persistence. Cell 56:517–520

    Article  PubMed  CAS  Google Scholar 

  36. Poulter LW, Collings LA, Tung KS, Waters MFR (1984) Parasitism of antigen presenting cells in hyperbacillary leprosy. Clin Exp Immunol 55:611–617

    PubMed  CAS  Google Scholar 

  37. Puré E, Inaba K, Crowley MT, Tardelli L, Witmer-Pack MD, Ruberti G, Fathman G, Steinman RM (1990) Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med 172:1459–1469

    Article  PubMed  Google Scholar 

  38. Reiner NE, Ng W, McMaster WR (1987) Parasite-accessory cell interactions in murine leishmaniasis. II.Leishmania donovani suppresses macrophage expression of class I and class II major histocompatibility gene products. J Immunol 138:1926–1932

    PubMed  CAS  Google Scholar 

  39. Reis e Sousa C, Stahl PD, Austyn JM (1993) Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med 178:509–519

    Article  PubMed  CAS  Google Scholar 

  40. Ritter U, Moll H, Laskay T, Bröcker E-B, Velazco Castrejon O, Becker I, Gillitzer R (1995) Differential expression of chemokines in skin lesions of patients with localized and diffuse American cutaneous leishmaniasis. J Infect Dis (accepted for publication)

  41. Rollins BJA, Walz A, Baggiolini M (1991) Recombinant human MCP-1/JE induces chemotaxis, calcium influx, and the respiratory burst in human monocytes. Blood 78:1112–1116

    PubMed  CAS  Google Scholar 

  42. Sacks DL, Louis JA, Wirth DF (1993) Leishmaniasis. In: Warren KS (ed) Immunology and molecular biology of parasitic diseases. Blackwell, Boston, p 237

    Google Scholar 

  43. Schall TJ, Bacon KB (1994) Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 6:865–873

    Article  PubMed  CAS  Google Scholar 

  44. Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161:526–546

    Article  PubMed  CAS  Google Scholar 

  45. Scott P, James S, Sher A (1985) The respiratory burst is not required for killing of intracellular and extracellular parasites by a lymphokine-activated macrophage cell line. Eur J Immunol 15:553–558

    PubMed  CAS  Google Scholar 

  46. Scott P, Natovitz P, Coffman RL, Pearce E, Sher A (1988) Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med 168:1675–1684

    Article  PubMed  CAS  Google Scholar 

  47. Selin LK, Nahill SR, Welsh RM (1994) Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J Exp Med 179:1933–1943

    Article  PubMed  CAS  Google Scholar 

  48. Steinman RM, Inaba K, Schuler G (1995) Cutaneous dendritic cells: distinctive antigen-presenting cells for experimental models and disease states. In: Moll H (ed) The immune functions of epidermal Langerhans cells. Landes, Austin, pp 1–19

    Google Scholar 

  49. Titus RG, Milon G, Marchal G, Vassalli P, Cerottini J-C, Louis JA (1987) Involvement of specific Lyt-2+ T cells in the immunological control of experimentally induced murine cutaneous leishmaniasis. Eur J Immunol 17:1429–1433

    PubMed  CAS  Google Scholar 

  50. Wang Z-E, Reiner SL, Hatam F, Heinzel FP, Bouvier J, Turck CW, Locksley RM (1993) Targeted activation of CD8 cells and infection of β2-microglobulin-deficient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. J Immunol 151:2077–2086

    PubMed  CAS  Google Scholar 

  51. Wei X-Q, Charles IG, Smith A, Ure J, Feng G-J, Huang F-P, Xu D, Müller W, Moncada S, Liew FY (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375:408–411

    Article  PubMed  CAS  Google Scholar 

  52. Will A, Blank C, Röllinghoff M, Moll H (1992) Murine epidermal Langerhans cells are potent stimulators of an antigen-specific T cell response toLeishmania major, the cause of cutaneous leishmaniasis. Eur J Immunol 22:1341–1347

    PubMed  CAS  Google Scholar 

  53. Yu X, Antoniades HN, Graves DT (1993) Expression of monocyte chemoattractant protein 1 in human inflamed gingival tissues. Infect Immun 61:4622–4628

    PubMed  CAS  Google Scholar 

  54. Zachariae COC, Anderson AO, Thompson HL, Appella E, Mantovani A, Oppenheim JJ, Matsushima K (1990) Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J Exp Med 171:2177–2182

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moll, H., Ritter, U., Flohé, S. et al. Cutaneous leishmaniasis: a model for analysis of the immunoregulation by accessory cells. Med Microbiol Immunol 184, 163–168 (1996). https://doi.org/10.1007/BF02456130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456130

Key words

Navigation