Skip to main content

Mechanisms of Immunopathology of Leishmaniasis

  • Chapter
  • First Online:
Pathogenesis of Leishmaniasis

Abstract

While cutaneous leishmaniasis is characterized by lesions proximal to the site of the sandfly bite, visceral leishmaniasis is associated with immunopathology in the liver and spleen of the infected host. This chapter offers a brief overview of the immune responses generated during infections with cutaneous and visceral leishmaniasis. Insights on how the immune responses generated during cutaneous and visceral leishmaniasis coupled with other host- and pathogen-derived factors determine the clinical pathology and outcome of the disease are also discussed.

Gayathri Natarajan and Steve Oghumu are equal contributors of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akuffo H, Maasho K, Blostedt M, Hojeberg B, Britton S, Bakhiet M (1997) Leishmania aethiopica derived from diffuse leishmaniasis patients preferentially induce mRNA for interleukin-10 while those from localized leishmaniasis patients induce interferon-gamma. J Infect Dis 175(3):737–741

    Article  PubMed  CAS  Google Scholar 

  • Alexander J, Carter KC, Al-Fasi N, Satoskar A, Brombacher F (2000) Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol 30(10):2935–2943. doi:10.1002/1521-4141(200010)30:10<2935::AID-IMMU2935>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  • Ato M, Stager S, Engwerda CR, Kaye PM (2002) Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 3(12):1185–1191. doi:10.1038/ni861

    Article  PubMed  CAS  Google Scholar 

  • Ato M, Maroof A, Zubairi S, Nakano H, Kakiuchi T, Kaye PM (2006) Loss of dendritic cell migration and impaired resistance to Leishmania donovani infection in mice deficient in CCL19 and CCL21. J Immunol 176(9):5486–5493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Badaro R, Jones TC, Lorenco R, Cerf BJ, Sampaio D, Carvalho EM, Rocha H, Teixeira R, Johnson WD Jr (1986) A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis 154(4):639–649

    Article  PubMed  CAS  Google Scholar 

  • Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165(2):969–977. doi:ji_v165n2p969 [pii]

    Google Scholar 

  • Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA, Sacks DL (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194(10):1497–1506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420(6915):502–507. doi:10.1038/nature01152 [doi]; nature01152 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Blackwell JM (1999) Tumour necrosis factor alpha and mucocutaneous leishmaniasis. Parasitol Today 15(2):73–75. doi:S0169-4758(98)01355-6 [pii]

    Google Scholar 

  • Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, Searle S, Miller EN, Peacock CS, Mohammed H, Ibrahim M (2001) SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol 3(12):773–784

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bucheton B, Argiro L, Chevillard C, Marquet S, Kheir MM, Mergani A, El-Safi SH, Dessein AJ (2007) Identification of a novel G245R polymorphism in the IL-2 receptor beta membrane proximal domain associated with human visceral leishmaniasis. Genes Immun 8(1):79–83. doi:10.1038/sj.gene.6364355

    Article  PubMed  CAS  Google Scholar 

  • Castes M, Tapia FJ (1998) Immunopathology of American tegumentary leishmaniasis. Acta Cient Venez 49(1):42–56

    PubMed  CAS  Google Scholar 

  • Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5(11):873–882. doi:10.1038/nrmicro1748

    Article  PubMed  Google Scholar 

  • David CV, Craft N (2009) Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther 22(6):491–502. doi:10.1111/j.1529-8019.2009.01272.x

    Article  PubMed  Google Scholar 

  • Ehrchen JM, Roebrock K, Foell D, Nippe N, von Stebut E, Weiss JM, Munck NA, Viemann D, Varga G, Muller-Tidow C, Schuberth HJ, Roth J, Sunderkotter C (2010) Keratinocytes determine Th1 immunity during early experimental leishmaniasis. PLoS Pathog 6(4):e1000871. doi:10.1371/journal.ppat.1000871 [doi]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Engwerda CR, Murphy ML, Cotterell SE, Smelt SC, Kaye PM (1998) Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur J Immunol 28(2):669–680. doi:10.1002/(SICI)1521-4141(199802)28:02<669::AID-IMMU669>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  • Engwerda CR, Ato M, Cotterell SE, Mynott TL, Tschannerl A, Gorak-Stolinska PM, Kaye PM (2002) A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol 161(2):429–437

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frade AF, Oliveira LC, Costa DL, Costa CH, Aquino D, Van Weyenbergh J, Barral-Netto M, Barral A, Kalil J, Goldberg AC (2011) TGFB1 and IL8 gene polymorphisms and susceptibility to visceral leishmaniasis. Infect Genet Evol 11(5):912–916. doi:10.1016/j.meegid.2011.02.014

    Article  PubMed  CAS  Google Scholar 

  • Goto H, Lindoso JA (2004) Immunity and immunosuppression in experimental visceral leishmaniasis. Braz J Med Biol Res 37(4):615–623

    Article  PubMed  CAS  Google Scholar 

  • Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185(4):717–730

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gupta G, Oghumu S, Satoskar AR (2013) Mechanisms of immune evasion in leishmaniasis. Adv Appl Microbiol 82:155–184. doi:10.1016/B978-0-12-407679-2.00005-3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ilkovitch D (2011) Role of immune-regulatory cells in skin pathology. J Leukoc Biol 89(1):41–49. doi:jlb.0410229 [pii]; 10.1189/jlb.0410229 [doi]

    Google Scholar 

  • Karplus TM, Jeronimo SM, Chang H, Helms BK, Burns TL, Murray JC, Mitchell AA, Pugh EW, Braz RF, Bezerra FL, Wilson ME (2002) Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun 70(12):6919–6925

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaye PM, Svensson M, Ato M, Maroof A, Polley R, Stager S, Zubairi S, Engwerda CR (2004) The immunopathology of experimental visceral leishmaniasis. Immunol Rev 201:239–253. doi:10.1111/j.0105-2896.2004.00188.x

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Uzonna JE (2012) The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front Cell Infect Microbiol 2:83. doi:10.3389/fcimb.2012.00083 [doi]

    PubMed Central  PubMed  Google Scholar 

  • Lopez KS, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol 182(5):3039–3046. doi:182/5/3039 [pii]; 10.4049/jimmunol.0713598 [doi]

    Google Scholar 

  • McCall LI, Matlashewski G (2012) Involvement of the Leishmania donovani virulence factor A2 in protection against heat and oxidative stress. Exp Parasitol 132(2):109–115. doi:10.1016/j.exppara.2012.06.001

    Article  PubMed  CAS  Google Scholar 

  • McCall LI, Zhang WW, Matlashewski G (2013) Determinants for the development of visceral leishmaniasis disease. PLoS Pathog 9(1):e1003053. doi:10.1371/journal.ppat.1003053

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201:206–224. doi:10.1111/j.0105-2896.2004.00190.x [doi]; IMR190 [pii]

    Google Scholar 

  • Mehrotra S, Fakiola M, Oommen J, Jamieson SE, Mishra A, Sudarshan M, Tiwary P, Rani DS, Thangaraj K, Rai M, Sundar S, Blackwell JM (2011) Genetic and functional evaluation of the role of CXCR1 and CXCR2 in susceptibility to visceral leishmaniasis in north-east India. BMC Med Genet 12:162. doi:10.1186/1471-2350-12-162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166(3):1912–1920

    Article  PubMed  CAS  Google Scholar 

  • Mohamed HS, Ibrahim ME, Miller EN, Peacock CS, Khalil EA, Cordell HJ, Howson JM, El Hassan AM, Bereir RE, Blackwell JM (2003) Genetic susceptibility to visceral leishmaniasis in The Sudan: linkage and association with IL4 and IFNGR1. Genes Immun 4(5):351–355. doi:10.1038/sj.gene.6363977

    Article  PubMed  CAS  Google Scholar 

  • Mougneau E, Bihl F, Glaichenhaus N (2011) Cell biology and immunology of Leishmania. Immunol Rev 240(1):286–296. doi:10.1111/j.1600-065X.2010.00983.x [doi]

    Article  PubMed  CAS  Google Scholar 

  • Murphy ML, Wille U, Villegas EN, Hunter CA, Farrell JP (2001) IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31(10):2848–2856. doi:10.1002/1521-4141(2001010)31:10<2848::AID-IMMU2848>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  • Murray HW (2001) Tissue granuloma structure-function in experimental visceral leishmaniasis. Int J Exp Pathol 82(5):249–267

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189(4):741–746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murray HW, Hariprashad J, Coffman RL (1997) Behavior of visceral Leishmania donovani in an experimentally induced T helper cell 2 (Th2)-associated response model. J Exp Med 185(5):867–874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P, Iparraguirre A, Cavanagh LL, Triccas JA, Beverley SM, Scott P, Weninger W (2008) Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog 4(11):e1000222. doi:10.1371/journal.ppat.1000222 [doi]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nogueira MF, Goto H, Sotto MN, Cuce LC (2008) Cytokine profile in Montenegro skin test of patients with localized cutaneous and mucocutaneous leishmaniasis. Rev Inst Med Trop Sao Paulo 50(6):333–337. doi:S0036-46652008000600004 [pii]

    Google Scholar 

  • Nylen S, Eidsmo L (2012) Tissue damage and immunity in cutaneous leishmaniasis. Parasite Immunol 34(12):551–561. doi:10.1111/pim.12007 [doi]

    Article  PubMed  CAS  Google Scholar 

  • Oghumu S, Lezama-Davila CM, Isaac-Marquez AP, Satoskar AR (2010) Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol 126(3):389–396. doi:10.1016/j.exppara.2010.02.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okwor I, Uzonna J (2008) Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies. Immunol Res 41(2):123–136. doi:10.1007/s12026-008-8016-2 [doi]

    Article  PubMed  Google Scholar 

  • Qi H, Ji J, Wanasen N, Soong L (2004) Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infect Immun 72(2):988–995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7(9):581–596. doi:S1473-3099(07)70209-8 [pii]; 10.1016/S1473-3099(07)70209-8 [doi]

    Google Scholar 

  • Ribeiro-Gomes FL, Sacks D (2012) The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Front Cell Infect Microbiol 2:59. doi:10.3389/fcimb.2012.00059 [doi]

    Article  PubMed Central  PubMed  Google Scholar 

  • Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL (2012a) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog 8(2):e1002536. doi:10.1371/journal.ppat.1002536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL (2012b) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog 8(2):e1002536. doi:10.1371/journal.ppat.1002536 [doi]; PPATHOGENS-D-11-01509 [pii]

    Google Scholar 

  • Rosas LE, Satoskar AA, Roth KM, Keiser TL, Barbi J, Hunter C, de Sauvage FJ, Satoskar AR (2006a) Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to leishmania donovani infection but develop severe liver immunopathology. Am J Pathol 168(1):158–169. doi:10.2353/ajpath.2006.050013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rosas LE, Snider HM, Barbi J, Satoskar AA, Lugo-Villarino G, Keiser T, Papenfuss T, Durbin JE, Radzioch D, Glimcher LH, Satoskar AR (2006b) Cutting edge: STAT1 and T-bet play distinct roles in determining outcome of visceral leishmaniasis caused by Leishmania donovani. J Immunol 177(1):22–25

    Article  PubMed  CAS  Google Scholar 

  • Smelt SC, Engwerda CR, McCrossen M, Kaye PM (1997) Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol 158(8):3813–3821

    PubMed  CAS  Google Scholar 

  • Soong L, Henard CA, Melby PC (2012) Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 34(6):735–751. doi:10.1007/s00281-012-0350-8

    Article  PubMed  CAS  Google Scholar 

  • Squires KE, Schreiber RD, McElrath MJ, Rubin BY, Anderson SL, Murray HW (1989) Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J Immunol 143(12):4244–4249

    PubMed  CAS  Google Scholar 

  • Stager S, Alexander J, Carter KC, Brombacher F, Kaye PM (2003) Both interleukin-4 (IL-4) and IL-4 receptor alpha signaling contribute to the development of hepatic granulomas with optimal antileishmanial activity. Infect Immun 71(8):4804–4807

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stanley AC, Engwerda CR (2007) Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol 85(2):138–147. doi:10.1038/sj.icb7100011

    Article  PubMed  CAS  Google Scholar 

  • Thalhofer CJ, Chen Y, Sudan B, Love-Homan L, Wilson ME (2011) Leukocytes infiltrate the skin and draining lymph nodes in response to the protozoan Leishmania infantum chagasi. Infect Immun 79(1):108–117. doi:10.1128/IAI.00338-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173(11):6521–6525. doi:173/11/6521 [pii]

    Google Scholar 

  • von Stebut E (2007a) Cutaneous Leishmania infection: progress in pathogenesis research and experimental therapy. Exp Dermatol 16(4):340–346. doi:EXD554 [pii]; 10.1111/j.1600-0625.2007.00554.x [doi]

    Google Scholar 

  • von Stebut E (2007b) Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol 17(2):115–122. doi:ejd.2007.0122 [pii]; 10.1684/ejd.2007.0122 [doi]

    Google Scholar 

  • Wilson ME, Jeronimo SM, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog 38(4):147–160. doi:10.1016/j.micpath.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  • Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, Waisman A, Nigg AP, Knop J, Udey MC, von Stebut E (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med 203(1):177–188. doi:jem.20052288 [pii]; 10.1084/jem.20052288 [doi]

    Google Scholar 

  • Zhang WW, Matlashewski G (2001) Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 39(4):935–948

    Article  PubMed  CAS  Google Scholar 

  • Zhang WW, Mendez S, Ghosh A, Myler P, Ivens A, Clos J, Sacks DL, Matlashewski G (2003) Comparison of the A2 gene locus in Leishmania donovani and Leishmania major and its control over cutaneous infection. J Biol Chem 278(37):35508–35515. doi:10.1074/jbc.M305030200

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra EE, el-Hassan AM (2001) Leishmaniasis in Sudan. Visceral leishmaniasis. Trans R Soc Trop Med Hyg 95(suppl 1):S27–S58

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants and National Institute of Dental and Craniofacial Research Training Grant T32DE014320 awarded to S.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Satoskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Natarajan, G., Oghumu, S., Varikuti, S., Thomas, A., Satoskar, A. (2014). Mechanisms of Immunopathology of Leishmaniasis. In: Satoskar, A., Durvasula, R. (eds) Pathogenesis of Leishmaniasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9108-8_1

Download citation

Publish with us

Policies and ethics