Skip to main content

An Insight into Immunopathology of Leishmaniasis

  • Chapter
  • First Online:
Pathobiology of Parasitic Protozoa: Dynamics and Dimensions
  • 187 Accesses

Abstract

Leishmaniasis is a disease complex with clinical manifestations ranging from systemic visceral leishmaniasis (VL) to cutaneous leishmaniasis (CL) with skin-restricted lesions to mucocutaneous leishmaniasis (MCL) that extends to mucous membranes. These classical disease outcomes are understood as an outcome of the infecting parasite species/subspecies along with the immune correlates that define host immune status. Further each of the visceral, cutaneous and/or mucocutaneous disease forms exhibits heterogenous gradation of parasite load, extent of parasite dissemination and collateral host immunopathological damage that may result in asymptomatic, mild, moderate or severe disease phenotype. A complex network of crosstalk between immune cells, viz. neutrophils, macrophages and heterogenous T cells, with varied effector immune molecules defines the disease protective versus progressive response. Unlike a clear Th1 versus Th2 immune response in VL and CL murine models, the immune correlates in classical VL and CL human subjects exhibit a mixed response with considerable heterogeneity. A net balance of the inflammatory versus anti-inflammatory immune response induced by the complement of antigen pool presented by discrete parasite species along with the immune regulation mediated by T regulatory cells drives the immunopathological outcome. Such immune heterogeneity extends to a newer disease phenomenon of atypical leishmaniasis wherein the parasite species classically known to cause VL is reported to cause cutaneous disease and vice versa. The biology of such atypical leishmaniasis cases is beginning to be explored in terms of the host immune changes apart from the differences in the parasite determinants. The chapter seeks to highlight the host immune heterogeneity that is associated with different disease outcomes in a classical setting along with atypical clinical manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thalhofer CJ, et al. Leukocytes infiltrate the skin and draining lymph nodes in response to the protozoan Leishmania infantum chagasi. Infect Immun. 2011;79(1):108–17.

    Article  CAS  Google Scholar 

  2. Ribeiro-Gomes FL, et al. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog. 2012;8(2):e1002536.

    Article  CAS  Google Scholar 

  3. Roberts M. Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Med Bull. 2006;75(1):115–30.

    Article  Google Scholar 

  4. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2(11):845–58.

    Article  CAS  Google Scholar 

  5. Nylen S, Gautam S. Immunological perspectives of leishmaniasis. J Global Infect Dis. 2010;2(2):135.

    Article  Google Scholar 

  6. Samant M, et al. Role of cytokines in experimental and human visceral leishmaniasis. Front Cell Infect Microbiol. 2021;11:624009.

    Article  CAS  Google Scholar 

  7. Dayakar A, et al. Cytokines: key determinants of resistance or disease progression in visceral leishmaniasis: opportunities for novel diagnostics and immunotherapy. Front Immunol. 2019;10:670.

    Article  CAS  Google Scholar 

  8. Alexander J, Brombacher F. T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol. 2012;3:80.

    Article  CAS  Google Scholar 

  9. Maspi N, Abdoli A, Ghaffarifar F. Pro-and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathogens Glob Health. 2016;110(6):247–60.

    Article  CAS  Google Scholar 

  10. Kaushal H, et al. Role of CD8+ T cells in protection against Leishmania donovani infection in healed visceral leishmaniasis individuals. BMC Infect Dis. 2014;14(1):1–7.

    Article  Google Scholar 

  11. Tanoli ZM, Rai ME, Gandapur ASK. Clinical presentation and management of visceral leishmaniasis. J Ayub Med Coll Abbottabad. 2005;17(4).

    Google Scholar 

  12. Costa ASA, et al. Cytokines and visceral leishmaniasis: a comparison of plasma cytokine profiles between the clinical forms of visceral leishmaniasis. Memorias do instituto oswaldo cruz. 2012;107:735–9.

    Article  CAS  Google Scholar 

  13. McCall L-I, Zhang W-W, Matlashewski G. Determinants for the development of visceral leishmaniasis disease. PLoS Pathog. 2013;9(1):e1003053.

    Article  CAS  Google Scholar 

  14. Caldas A, et al. Balance of IL-10 and interferon-γ plasma levels in human visceral leishmaniasis: implications in the pathogenesis. BMC Infect Dis. 2005;5(1):1–9.

    Article  Google Scholar 

  15. Nylén S, Kumar R. Immunobiology of visceral leishmaniasis. Front Immunol. 2012;3:251.

    Google Scholar 

  16. Nylén S, Sacks D. Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol. 2007;28(9):378–84.

    Article  Google Scholar 

  17. Thakur L, et al. An insight into systemic immune response in Leishmania donovani mediated atypical cutaneous leishmaniasis in the new endemic state of Himachal Pradesh, India. Front Immunol. 2022;12:12.

    Article  Google Scholar 

  18. Hailu A, et al. T cell subset and cytokine profiles in human visceral leishmaniasis during active and asymptomatic or sub-clinical infection with Leishmania donovani. Clin Immunol. 2005;117(2):182–91.

    Article  CAS  Google Scholar 

  19. Ansari NA, Saluja S, Salotra P. Elevated levels of interferon-γ, interleukin-10, and interleukin-6 during active disease in Indian kala azar. Clin Immunol. 2006;119(3):339–45.

    Article  CAS  Google Scholar 

  20. Peruhype-Magalhaes V, et al. Mixed inflammatory/regulatory cytokine profile marked by simultaneous raise of interferon-γ and interleukin-10 and low frequency of tumour necrosis factor-α+ monocytes are hallmarks of active human visceral leishmaniasis due to Leishmania chagasi infection. Clin Exp Immunol. 2006;146(1):124–32.

    Article  CAS  Google Scholar 

  21. Dos Santos PL, et al. The severity of visceral leishmaniasis correlates with elevated levels of serum IL-6, IL-27 and sCD14. PLoS Negl Trop Dis. 2016;10(1):e0004375.

    Article  Google Scholar 

  22. Osero BO, et al. Unravelling the unsolved paradoxes of cytokine families in host resistance and susceptibility to Leishmania infection. Cytokine: X. 2020;2(4):100043.

    CAS  Google Scholar 

  23. Pitta MG, et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest. 2009;119(8):2379–87.

    CAS  Google Scholar 

  24. Mantovani A, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  CAS  Google Scholar 

  25. O'Garra A, et al. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest. 2004;114(10):1372–8.

    Article  CAS  Google Scholar 

  26. Murphy ML, et al. IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol. 2001;31(10):2848–56.

    Article  CAS  Google Scholar 

  27. Ghalib HW, et al. Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest. 1993;92(1):324–9.

    Article  CAS  Google Scholar 

  28. Bhattacharya P, et al. Induction of IL-10 and TGFβ from CD4+ CD25+ FoxP3+ T cells correlates with parasite load in Indian kala-azar patients infected with Leishmania donovani. PLoS Negl Trop Dis. 2016;10(2):e0004422.

    Article  Google Scholar 

  29. Khoshdel A, et al. Increased levels of IL-10, IL-12, and IFN-in patients with visceral leishmaniasis. Braz J Infect Dis. 2009;13:44–6.

    Article  CAS  Google Scholar 

  30. Mege JL, et al. The two faces of interleukin 10 in human infectious diseases. Lancet Infect Dis. 2006;6(9):557–69.

    Article  CAS  Google Scholar 

  31. Ghosh AK, Dasgupta S, Ghose AC. Immunoglobulin G subclass-specific antileishmanial antibody responses in Indian kala-azar and post-kala-azar dermal leishmaniasis. Clin Diagn Lab Immunol. 1995;2(3):291–6.

    Article  CAS  Google Scholar 

  32. Chatterjee M, et al. Distribution of IgG subclasses in antimonial unresponsive Indian kala-azar patients. Clin Exp Immunol. 1998;114(3):408–13.

    Article  CAS  Google Scholar 

  33. Anam K, et al. Immunoglobulin subclass distribution and diagnostic value of Leishmania donovani antigen-specific immunoglobulin G3 in Indian kala-azar patients. Clin Diag Lab Immunol. 1999;6(2):231–5.

    Article  CAS  Google Scholar 

  34. Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol. 2001;166(2):1141–7.

    Article  CAS  Google Scholar 

  35. Galvão-Castro B, et al. Polyclonal B cell activation, circulating immune complexes and autoimmunity in human American visceral leishmaniasis. Clin Exp Immunol. 1984;56(1):58–66.

    Google Scholar 

  36. Buxbaum LU, Scott P. Interleukin 10-and Fcγ receptor-deficient mice resolve Leishmania mexicana lesions. Infect Immun. 2005;73(4):2101–8.

    Article  CAS  Google Scholar 

  37. Miles SA, et al. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J Exp Med. 2005;201(5):747–54.

    Article  CAS  Google Scholar 

  38. Elshafie AI, et al. Circulating immune complexes (IC) and IC-induced levels of GM-CSF are increased in Sudanese patients with acute visceral Leishmania donovani infection undergoing sodium stibogluconate treatment: implications for disease pathogenesis. J Immunol. 2007;178(8):5383–9.

    Article  CAS  Google Scholar 

  39. Scorza BM, Carvalho EM, Wilson ME. Cutaneous manifestations of human and murine leishmaniasis. Int J Mol Sci. 2017;18(6).

    Google Scholar 

  40. Lucas PC, et al. Epidemiologic and immunologic findings for the subclinical form of Leishmania braziliensis infection.

    Google Scholar 

  41. Castellano LR, et al. Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-gamma production. Hum Immunol. 2009;70(6):383–90.

    Article  CAS  Google Scholar 

  42. Ajdary S, et al. Comparison of the immune profile of nonhealing cutaneous Leishmaniasis patients with those with active lesions and those who have recovered from infection. Infect Immun. 2000;68(4):1760–4.

    Article  CAS  Google Scholar 

  43. Heinzel FP, et al. Production of interferon y, interleukin 2, interleukin 4, and interleukin 10 by CD4' lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci. 1991;88:7011–5.

    Article  CAS  Google Scholar 

  44. Kumar R, Bumb RA, Salotra P. Evaluation of localized and systemic immune responses in cutaneous leishmaniasis caused by Leishmania tropica: interleukin-8, monocyte chemotactic protein-1 and nitric oxide are major regulatory factors. Immunology. 2010;130(2):193–201.

    Article  CAS  Google Scholar 

  45. Gonzalez-Lombana C, et al. IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection. PLoS Pathog. 2013;9(3):e1003243.

    Article  CAS  Google Scholar 

  46. Lopez Kostka S, et al. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol. 2009;182(5):3039–46.

    Article  CAS  Google Scholar 

  47. Gimblet C, et al. IL-22 protects against tissue damage during cutaneous leishmaniasis. PLoS One. 2015;10(8):e0134698.

    Article  Google Scholar 

  48. Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16(9):581–92.

    Article  CAS  Google Scholar 

  49. Katara GK, et al. Analysis of localized immune responses reveals presence of Th17 and Treg cells in cutaneous leishmaniasis due to Leishmania tropica. BMC Immunol. 2013;14(1):1–9.

    Article  Google Scholar 

  50. Belkaid Y, et al. CD4+ CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420(6915):502–7.

    Article  CAS  Google Scholar 

  51. Rodriguez V, Centeno M, Ulrich M. The IgG isotypes of specific antibodies in patients with American cutaneous leishmaniasis; relationship to the cell-mediated immune response. Parasite Immunol. 1996;18(7):341–5.

    Article  CAS  Google Scholar 

  52. Ozbılge H, et al. IgG and IgG subclass antibodies in patients with active cutaneous leishmaniasis. J Med Microbiol. 2006;55(10):1329–31.

    Article  Google Scholar 

  53. Thakur L, et al. Atypical leishmaniasis: a global perspective with emphasis on the Indian subcontinent. PLoS Negl Trop Dis. 2018;12(9):e0006659.

    Article  Google Scholar 

  54. Kumar NP, et al. Cutaneous leishmaniasis caused by Leishmania donovani in the tribal population of the Agasthyamala Biosphere Reserve forest, Western Ghats, Kerala, India. J Med Microbiol. 2015;64(Pt 2):157–63.

    Article  CAS  Google Scholar 

  55. Bastola A, et al. A case of high altitude cutaneous leishmaniasis in a non-endemic region in Nepal. Parasitol Int. 2020;74:101991.

    Article  Google Scholar 

  56. Siriwardana Y, et al. Leishmania donovani induced cutaneous leishmaniasis: an insight into atypical clinical variants in Sri Lanka. J Trop Med. 2019;2019:4538597.

    Article  Google Scholar 

  57. Thakur L, et al. Leishmania donovani infection with atypical cutaneous manifestations, Himachal Pradesh, India, 2014-2018. Emerg Infect Dis. 2020;26(8):1864–9.

    Article  CAS  Google Scholar 

  58. Lypaczewski P, et al. An intraspecies Leishmania donovani hybrid from the Indian subcontinent is associated with an atypical phenotype of cutaneous disease. iScience. 2022;25(2):103802.

    Article  CAS  Google Scholar 

  59. Atapattu D, et al. The first documentation of the immune response to cutaneous leishmaniasis caused by Leishmania donovani in Sri Lanka. J Infect Dis. 2017;7(2):76.

    Google Scholar 

  60. Manamperi NH, et al. In situ immunopathological changes in cutaneous leishmaniasis due to Leishmania donovani. Parasite Immunol. 2017;39(3):e12413.

    Article  Google Scholar 

  61. Galgamuwa LS, et al. Assessment of intralesional cytokine profile of cutaneous leishmaniasis caused by Leishmania donovani in Sri Lanka. BMC Microbiol. 2019;19(1):14.

    Article  Google Scholar 

  62. Gautam S, et al. IL-10 neutralization promotes parasite clearance in splenic aspirate cells from patients with visceral leishmaniasis. J Infect Dis. 2011;204(7):1134–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, Y., Nikita, R., Madaan, P., Jain, M. (2023). An Insight into Immunopathology of Leishmaniasis. In: Mukherjee, B., Bhattacharya, A., Mukhopadhyay, R., Aguiar, B.G.A. (eds) Pathobiology of Parasitic Protozoa: Dynamics and Dimensions. Springer, Singapore. https://doi.org/10.1007/978-981-19-8225-5_11

Download citation

Publish with us

Policies and ethics