Skip to main content
Log in

Phosphorylation-induced conformational changes in the phosphorylaseab hybrid as revealed by resolution of pyridoxal 5′-phosphate with imidazole citrate and cysteine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The accessibility of pyridoxal 5′-phosphates of the phosphorylaseab hybrid to resolution by imidazole citrate and cysteine was studied and compared with that of theb anda forms. Promotion of resolution of phosphorylated forms by raising the temperature or in the presence of glycogen indicates that the resistance of phosphorylasea andab to resolution at 0°C is due rather to their tetrameric state than their phosphorylation-related active conformation. The pattern of resolution of theab hybrid was similar to that of thea and differed from that of theb forms in that it occurred at 30°C and 37°C but not at 0°C, moreover, it did not show first-order kinetics. On the other hand, inhibition of resolution by ligands binding to the nucleotide site of phosphorylase reflected an intermediate sensitivity of theab form between that of theb anda forms. We conclude that partial phosphorylation of phosphorylaseb elicits conformational change(s) in both subunits which influence the monomer-monomer interactions and resolution of pyridoxal 5′-phosphates. Resistance ofab hybrid to monomerizing agents as imidazole citrate, comparable to that of other forms, argues for its stability, ruling out its reshuffling into mixtures of phosphorylaseb anda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dombrádi V: Structural aspects of the catalytic and regulatory function of glycogen phosphorylase. Int J Biochem 13: 125–139 1981

    Article  PubMed  Google Scholar 

  2. Madsen NB: Glycogen phosphorylase. In: PD Boyer, EG Krebs (eds.), The Enzymes, Academic Press, New York, 1986, Vol.7, pp. 365–394

    Google Scholar 

  3. Walsh DA, Newholme P, Cawley KC, Van Patten SM, Angelos KL: Motifs of protein phosphorylation and mechanisms of reversible covalent regulation. Physiol Rev 71: 285–304, 1991

    PubMed  CAS  Google Scholar 

  4. Hurd SS, Teller D, Fischer EH: Probable formation of partially phosphorylated intermediates in interconversion of phosphorylasea andb. Biochem Biophys Res Commun 24: 79–84, 1966

    Article  PubMed  CAS  Google Scholar 

  5. Bot G, Kovács E, Gergely P. Partial phosphorylation of muscle phosphorylase I. Formation of a hybrid phosphorylasein vitro. Biochim Biophys Acta 370: 70–77, 1974

    PubMed  CAS  Google Scholar 

  6. Gergely P, Bot G, Kovács E: Partial phosphorylation of muscle phosphorylase II. Formation of a hybrid phosphorylasein vivo. Biochim Biophys Acta 370: 78–84 1974

    PubMed  CAS  Google Scholar 

  7. Gergely P, Castle AG, Crawford N: Purification and characterization of phosphorylasea from human platelets. Int J Biochem 10: 807–814, 1979

    Article  CAS  Google Scholar 

  8. Vereb G, Szücs K, Szabó J, Belanova M, Bot G: Formation of partially phosphorylated phosphorylase in isoproterenol stimulated rat hearts. Mol Cell Biochem 69: 139–146, 1986

    Article  PubMed  CAS  Google Scholar 

  9. Van Marrewijk WJA, Van den Broek ATHM, Beenakkers AMTH: Glycogen phosphorylase in the fat body ofLocusta migratoria. Insect Biochem 15: 341–347, 1985

    Article  Google Scholar 

  10. Schmidt H, Wegener G: Glycogen phosphorylase in fish muscle: demonstration of three interconvertible forms. Am J Physiol 258: C344-C351, 1990

    PubMed  CAS  Google Scholar 

  11. Vereb G, Fodor A, Bot G: Kinetic characterization of rabbit skelatal muscle phosphorylaseab hybird. Biochim Biophys Acta 915: 19–27, 1987

    PubMed  CAS  Google Scholar 

  12. Fischer EH, Krebs EG: Relationship of structure to function of muscle phosphorylase. Fed Proc 25: 1511–1520, 1966

    PubMed  CAS  Google Scholar 

  13. Shaltiel S, Hedrick JL, Fischer EH: On the role of pyridoxal 5′-phosphate in phosphorylase II. Resolution of rabbit muscle phosphorylaseb. Biochemistry 5: 2108–2116, 1966

    Article  PubMed  CAS  Google Scholar 

  14. Hedrick JL, Shaltiel S, Fischer EH: Conformational changes and the mechanism of resolution of glycogen phosphorylaseb. Biochemistry 8: 2422–2429, 1969

    Article  PubMed  CAS  Google Scholar 

  15. Harris WR, Miller JF, Graves DJ: Purification and characterization of a glycogen phosphorylase analog missing the aminoterminal segment. Arch Biochem Biophys 250: 446–455, 1986

    Article  PubMed  CAS  Google Scholar 

  16. Fischer EH, Krebs EG: The isolation and crystallization of rabbit skeletal muscle phosphorylaseb. J Biol Chem 231: 65–71, 1958

    PubMed  CAS  Google Scholar 

  17. Taussky HH, Shorr E: A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202: 675–695, 1953

    PubMed  CAS  Google Scholar 

  18. Wang JH, Graves DJ: The relationship of the dissociation to the catalytic activity of glycogen phosphorylasea. Biochemistry 3: 1437–1445, 1964

    Article  PubMed  CAS  Google Scholar 

  19. Helmreich E, Michaelides MC, Cori CF: Effects of substrates and a substrate analog on the binding of 5′-adenylic acid to muscle phosphorylasea. Biochemistry 6: 3695–3710, 1967

    Article  PubMed  CAS  Google Scholar 

  20. Kastenschmidt LL, Kastenschmidt J, Helmreich E: The effect of temperature on the allosteric transitions of rabbit skeletal muscle phosphorylaseb. Biochemistry 7: 4543–4556, 1968

    Article  PubMed  CAS  Google Scholar 

  21. Dombrádi V, Hajdú J, Bot G, Friedrich P: Structural changes in glycogen phosphorylase as revealed by cross-linking with bifunctional diimidates: phospho-dephospho hybrid and phosphorylasea. Biochemistry 19: 2295–2299, 1980

    Article  PubMed  Google Scholar 

  22. Wang JH, Shonka ML, Graves DJ: The effect of glucose on the sedimentation and catalytic activity of glycogen phosphorylase. Biochem Biophys Res Commun 18: 131–135, 1965

    Article  PubMed  CAS  Google Scholar 

  23. Sprang S, Fletterick RJ: Subunit interactions and the allosteric response in phosphorylase. Biophys J 32: 175–192, 1980

    Article  PubMed  CAS  Google Scholar 

  24. Sprang SR, Acharya KR, Goldsmith EJ, Stuart DJ, Varvill K, Fletterick RJ, Madsen NB, Johnson LN: Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336: 215–221, 1988

    Article  PubMed  CAS  Google Scholar 

  25. Barford D, Johnson LN: The allosteric transition of glycogen phosphorylase. Nature 340: 609–616, 1989

    Article  PubMed  CAS  Google Scholar 

  26. Goldsmith EJ, Sprang SR, Hamlin R, Xuong NH, Fletterick RJ: Domain separation in the activation of glycogen phosphorylasea. Science 245: 528–532, 1989

    PubMed  CAS  Google Scholar 

  27. Johnson LN, Barford D: The structural basis of the allosteric response and comparison with other allosteric proteins. J Biol Chem 265: 2409–2412, 1990

    PubMed  CAS  Google Scholar 

  28. Guenard D, Morange M, Buc H: Comparative study of the effect of 5′AMP and its analogs on rabbit glycogen phosphorylaseb isoenzymes. Eur J Biochem 76: 447–452, 1977

    Article  PubMed  CAS  Google Scholar 

  29. Morgan HE, Parmeggiani A: Regulation of glycogenolysis in muscle. J Biol Chem 239: 2440–2445, 1964

    PubMed  CAS  Google Scholar 

  30. Kasvinsky PJ, Madsen NB, Sygusch J, Fletterick RJ: The regulation of glycogen phosphorylasea by nucleotide derivatives. Kinetic and X-ray crystallographic studies. J Biol Chem 253: 3343–3351, 1978

    PubMed  CAS  Google Scholar 

  31. McLaughlin PJ, Stuart DJ, Klein HW, Oikinomakos NG, Johnson LN: Substrate-cofactor interactions for glycogen phosphorylaseb: a binding study in the crystal with heptenitol and heptulose 2-phosphate. Biochemistry 23: 5862–5873, 1984

    Article  PubMed  CAS  Google Scholar 

  32. Kasvinsky PJ, Shechosky S, Fletterick RJ: Synergistic regulation of phosphorylasea by glucose and caffeine. J Biol Chem 253: 9102–9106, 1978

    PubMed  CAS  Google Scholar 

  33. Yan SCB, Uhing RJ, Parrish RF, Metzler DE, Graves DJ: A role for pyridoxal phosphate in the control of dephosphorylation of phosphorylasea. J Biol Chem 254: 8263–8269, 1979

    PubMed  CAS  Google Scholar 

  34. Shaltiel S, Hedrick JL, Fischer EH: Stereospecific requirements for carbonyl reagents in the resolution and reconstitution of phosphorylaseb. Biochemistry 8: 2429–2436, 1969

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vereb, G., Pallagi, E. & Gergely, P. Phosphorylation-induced conformational changes in the phosphorylaseab hybrid as revealed by resolution of pyridoxal 5′-phosphate with imidazole citrate and cysteine. Mol Cell Biochem 110, 113–121 (1992). https://doi.org/10.1007/BF02454188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02454188

Key words

Navigation