Skip to main content
Log in

CO2,X (X=CO2, N2, He, NH3) pressure broadening and shift at 10 μm by using a mode tunable RF CO2 laser

  • Published:
Il Nuovo Cimento D

Summary

By using a mode tunable CO2 radiofrequency excited laser we have measured the pressure broadening and the shift of many CO2 laser lines perturbed by different gases (CO2, N2, He, NH3). While the broadening data agree with the previous work results, this technique allows a more accurate shift measurement. In particular the broadening and shift coefficients due to ammonia are measured for the first time.

Riassunto

Mediante un laser CO2 alimentato a radiofrequenza ed accordabile in modo su singola riga 510 MHz noi abbiamo misurato sia l’allargamento che lo spostamento per pressione delle righe delle transizioni laser dovuti a differenti perturbatori X (X=CO2, NH3, N2, He). I dati di allargamento confermano le misure precedenti mentre quelli di spostamento sono in parziale disaccordo. I dati per il sistema CO2, X (X=NH3) sono riportati per la prima volta.

Резюме

Используя CO2 лазер с радиочастотным возбуждением, мы измеряем уширение под действием давления и сдвиг CO2-лазерных линий, возмущенных различными газами (CO2, N2, He, NH3). Данные по уширению согласуются с результатами предыдущих работ. Однако используемая техника позволяет провести более точные измерения сдвига. В частности, впервые были измерены коэффициенты уширения и сдвига, обусловленные аммиаком.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Devir andU. P. Oppenheim:Appl. Opt.,8, 2121 (1969).

    Article  ADS  Google Scholar 

  2. C. Young andR. E. Chapman:J. Quant. Spectrosc. Radiat. Transfer.,14, 679 (1974).

    Article  ADS  Google Scholar 

  3. R. L. Abrams:Appl. Phys. Lett.,25, 609 (1974).

    Article  ADS  Google Scholar 

  4. R. K. Brimacombe andJ. Reid:IEEE J. Quantum. Electron., QE-19, 1668 (1983).

    Article  ADS  Google Scholar 

  5. L. S. Vasilenko, M. N. Skvrortsov, V. P. Chebotaev, G. I. Shersheneva andA. V. Shishaev:Opt. Spectra,32, 609 (1972).

    Google Scholar 

  6. C. Freed andR. G. O’Donnell:Metrologia,13, 151 (1976).

    Article  ADS  Google Scholar 

  7. K. L. SooHoo, C. Freed, J. E. Thomas andH. A. Haus:Phys. Rev. Lett.,53, 1437 (1984).

    Article  ADS  Google Scholar 

  8. K. L. SooHoo, C. Freed, J. E. Thomas andH. A. Haus:IEEE J. Quantum. Electron.,QE-21, 1159 (1985).

    Article  ADS  Google Scholar 

  9. G. Baldacchini, S. Marchetti, V. Montelatici, G. Buffa andO. Tarrini:J. Chem. Phys.,76, 5271 (1982).

    Article  ADS  Google Scholar 

  10. S. Marchetti andR. Simili:a)Nuovo Cimento D,10, 1005 (1988); b)Opt. Laser Technol. 20, 189 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, S., Simili, R. CO2,X (X=CO2, N2, He, NH3) pressure broadening and shift at 10 μm by using a mode tunable RF CO2 laser. Il Nuovo Cimento D 11, 1327–1335 (1989). https://doi.org/10.1007/BF02450548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450548

PACS 42.60

Navigation