Skip to main content
Log in

Influence of the Spectral Linewidths of a СО2 Laser on the Error in Measuring Gas Concentrations on the Example of Ammonia

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

The influence of the parameters (laser linewidths and profiles) of the CO2 laser based on the main molecular isotope on the absorption coefficient of a gaseous compound is analyzed using ammonia as an example. Results of application of the CO2 laser for the determination of the gaseous ammonia content are considered and possible errors in calculating the gas concentration caused by the neglect of the specific spectral linewidth of the CO2 laser are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Hinckley, Laser Monitoring of the Atmosphere [Russian translation], Mir, Moscow (1976).

    Book  Google Scholar 

  2. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications, Krieger Publishing Co., Malabar (1992).

    Google Scholar 

  3. D. K. Kullinger and A. Mooradian, Optical and Laser Remote Sensing, Springer Verlag, New York (1983).

    Book  Google Scholar 

  4. M. L. Stitch, in: Laser Handbook, M. Stirch and M. S. Bass, eds., North Holland, Amsterdam (1986), pp. 41–88.

  5. Mitrayana, J. G. Nikita, M. A. J. Wasono, and M. Satriawan, Sensing and Bio-Sensing Research, 30, 100387 (2020); https://doi.org/10.1016/j.sbsr.2020.100387.

    Article  Google Scholar 

  6. D.C. Dumitras, D. C. Dutu, C. Matey, et al., Laser Phys., 21 796–800 (2011); https://doi.org/10.1134/S1054660X11070061.

    Article  ADS  Google Scholar 

  7. I. Essiet, J. Emerg. Trends Eng. Appl. Sci., 4, 859–862 (2013).

    Google Scholar 

  8. D. A. Queißer, M. Burton, and L. Fiorani, Opt. Express, 23, 6634–6644 (2015); https://doi.org/10.1364/OE.23.006634.

    Article  ADS  Google Scholar 

  9. L. Fiorani, F. Colao, and F. Palucci, Opt. Lett., 34, 800–802 (2009).

    Article  ADS  Google Scholar 

  10. A. Aiuppa, L. Fiorani, S. Santoro, et al., Sci. Rep., 5, 13614 (2015); https://doi.org/10.1038/srep13614.

    Article  Google Scholar 

  11. F. J. M. Harren, J. Mandon, and S. M. Cristescu, Photoacoustic Spectroscopy in Trace Gas Monitoring, Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd. (2012); https://doi.org/10.1002/9780470027318.a0718.pub2.

    Book  Google Scholar 

  12. V. E. Zuev, ed., Laser Sensing of the Atmosphere [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  13. T. Fujiia and T. Fukuchi, Laser Remote Sensing, Taylor & Francis Group, Tokyo (2005).

    Book  Google Scholar 

  14. P. Gaudio, M. Gelfusal, A. Malizial, et al., J. Phys.: Conf. Ser., 658, 012004 (2015).

    Google Scholar 

  15. A. Pal, C. D. Clark, M. Sigman, and D. K. Killinger, J. Appl. Opt., 48, B145–B150 (2009); https://doi.org/10.1364/AO.48.00B145.

    Article  Google Scholar 

  16. B. Groft, G. R. Wentworth, R. V. Martin, et al., Nat. Commun., 15, 13444 (2016); DOI: https://doi.org/10.1038/ncomms13444/.

    Article  Google Scholar 

  17. A. Amy-Klein, H. Vigue’, and C. Chardonnet, J. Mol. Spectrosc., 228, 206–212 (2004).

    Article  ADS  Google Scholar 

  18. C. Freed, L. S. Bradley, and R. G. O’Donnell, IEEE J. Quant. Electron., 16, 1195−1206 (1980).

    Article  ADS  Google Scholar 

  19. R. Beck, W. Englisch, and K. Gurs, Table of Laser Lines in Gases and Vapors, Springer Series in Optical Sciences, Springer, Berlin; Heidelberg (1978).

    Book  Google Scholar 

  20. http://www.slab-laser.ru/CO2-lasers.html.

  21. O. K. Voitsekhovskaya, E. N. Aksenova, and F. G. Shatrov, J. Appl. Opt., 38, 2337–2341 (1999).

    Article  ADS  Google Scholar 

  22. H. G. Heard, Laser Parameter Measurements Handbook [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  23. O. Svelto, Principles of Lasers, Plenum Press, New York; London (1984).

    Google Scholar 

  24. F. L. Duarte, J. Appl. Opt., 24, 34–37 (1985).

    Article  ADS  Google Scholar 

  25. A. V. Kunents, G. N. Makarov, V. R. Mironenko, and I. Pak, Opt. Commun., 84, 37–41 (1991).

    Article  ADS  Google Scholar 

  26. Yu. A. Gorokhov, S. V. Efimov, I. N. Knyazev, and V. V. Lobko, Kvant. Elektr., 6, 2382–2392 (1979).

    Google Scholar 

  27. S. Al-Hawat, S. Saloum, and M. D. Zidan, Appl. Phys. B, 78, 439–442 (2004); DOI: https://doi.org/10.1007/s00340-003-1376-3.

    Article  ADS  Google Scholar 

  28. W. D. Kimura, Opt. Laser Technol., 88, 263–274 (2017).

    Article  ADS  Google Scholar 

  29. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  30. I. E. Gordon, L. S. Rothman, C. Hill, et al., J. Quant. Spectrosc. Radiat. Transfer, 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  31. N. Jacquinet-Husson, R. Armante, N. A. Scott, et al., J. Quant. Spectrosc. Radiat. Transfer, 327, 31–72 (2016).

    Google Scholar 

  32. A. A. Rakhymzhan and A. I. Chichinin, Int. Sch. Res. Notices, Article ID 592971 (2013); https://doi.org/10.1155/2013/592971.

  33. O. K. Voitsekhovskaya, S. V. Kuznetsov, S. V. Sapozhnikov, et al., Opt. Atmos. Okeana, 4, 938–953 (1991).

    ADS  Google Scholar 

  34. D. C. Dumitras, A. M. Bratu, and C. Popa, in: CO2 Laser – Optimisation and Application, D. C. Dumitras, ed., InTech, Rijeka (2012).

    Chapter  Google Scholar 

  35. A. P. Force, D. K. Killinger, W. E. DeFeo, and N. Menyuk, Appl. Opt., 24, 2837–2841 (1985).

    Article  ADS  Google Scholar 

  36. O. K. Voitsekhovskaya, D. E. Kashirskii, and O. V. Egorov, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 10/3, 129–131 (2015).

    Google Scholar 

  37. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Fundamentals of Atmospheric Optics [in Russian], Nauka, Saint Petersburg (2003).

    Google Scholar 

  38. R. J. Brewer and C. W. Bruce, Appl. Opt., 17, 3746–3749 (1978); https://doi.org/10.1364/AO.17.003746.

    Article  ADS  Google Scholar 

  39. A. A. Adamenkov, Yu. N. Bulkin, Yu. V. Kolobyanin, and E. A. Kudryashov, Opt. Atmos. Okeana, 8, 549–553 (1995).

    Google Scholar 

  40. Y. Zhao, Appl. Opt., 39, 997–1007 (2000).

    Article  ADS  Google Scholar 

  41. O. K. Voitsekhovskaya, D. M. Volkov, D. E. Kashirskii, and V. S. Korchikov, Kvant. Elektron., No. 7, 634–639 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Voitsekhovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 150–156, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskaya, O.K., Shefer, O.V. Influence of the Spectral Linewidths of a СО2 Laser on the Error in Measuring Gas Concentrations on the Example of Ammonia. Russ Phys J 64, 739–745 (2021). https://doi.org/10.1007/s11182-021-02368-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02368-5

Keywords

Navigation