Skip to main content
Log in

Multifrequency laser diagnostics of vibrational nonequilibrium gas media containing CO2 molecules

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The technique for multifrequency diagnostics of a vibrational nonequilibrium gas mixture that contains CO2 molecules is proposed. The technique uses data on unsaturated gains at lines of the 0001–[1000, 0200]I, II and 0002–[1001, 0201]I, II transitions obtained with the help of a tunable CO2 laser. Results of the study of the influence of accuracy of gain measurements and the number of sensing lines on errors in determining populations of vibrational levels and gas mixture translational temperatures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Osipov and A. V. Uvarov, “Stability problems in a nonequilibrium gaz,” Phys.-Uspekhi 39 (6), 597–608 (1996).

    Article  ADS  Google Scholar 

  2. A. I. Osipov and A. V. Uvarov, “Physics of a nonequilibrium gas,” Priroda (Moscow, Russ. Fed.), No. 10, 61–68 (2001).

    MATH  Google Scholar 

  3. W. J. Witteman, The CO2 Laser (Springer, 1987).

    Book  Google Scholar 

  4. J. D. Anderson, Gas-Dynamic Lasers: An Introduction (Academic, New York, 1976).

    Google Scholar 

  5. Handbook of Chemical Lasers, Ed. by R. Grossa and J. Botr (John Wiley & Sons, New York, 1976).

    Google Scholar 

  6. A. S. Boreisho, “High-power mobile chemical lasers,” Quantum Electron. 35 (5), 393–406 (2005).

    Article  ADS  Google Scholar 

  7. V. S. Letokhov, “Lasing in space,” Phys.-Uspekhi 45 (12), 1306–1310 (2002).

    Article  ADS  Google Scholar 

  8. V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  9. O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers (Nauka i tekhnika, Minsk, 1985) [in Russian].

    Google Scholar 

  10. V. K. Zhivotov, V. D. Rusanov, and A. A. Fridman, Diagnostics of Nonequilibrium Reactive Plasma (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  11. K. I. Arshinov, N. S. Leshenyuk, and V. V. Nevdakh, “Calculation of the vibrational temperatures and populations of the laser-active levels of CO2 from the spectral distribution of the gain,” Quantum Electron. 28 (8), 659–662 (1998).

    Article  ADS  Google Scholar 

  12. K. I. Arshinov, N. S. Leshenyuk, and V. V. Nevdakh, “Multifrequency diagnostics of a vibrationally equilibrium CO2-containing gas mixture,” J. Appl. Spectrosc. 68 (6), 942–948 (2001).

    Article  Google Scholar 

  13. K. I. Arshinov, M. K. Arshinov, V. V. Nevdakh, M. Y. Perrin, A. Soufiani, and V. V. Yasnov, “Accuracy in determination of the temperature and partial pressure of CO2 in CO2: N2: H2O: NO2 mixtures by multiplefrequency laser probing,” J. Appl. Spectrosc. 74 (6), 903–909 (2007).

    Article  ADS  Google Scholar 

  14. K. I. Arshinov, O. N. Krapivnaya, and V. V. Nevdakh, “Laser diagnostics of equilibrium a CO2: N2 gas mixture,” Atmos. Ocean. Opt. 27 (5), 381–385 (2014).

    Article  Google Scholar 

  15. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  16. T. J. Bridges and T. Y. Chang, “Accurate rotational constants of CO2 from measurements of cw beats in bulk GaAs between CO2 vibrational-rotational laser lines,” Phys. Rev. Lett. 22, 811–815 (1969).

    Article  ADS  Google Scholar 

  17. V. P. Kudrya, “Calculation of the Voigt function value at the line center,” Opt. Spektrosk. 55 (6), 113–114 (1983).

    Google Scholar 

  18. R. L. Abrams, “Broadening coefficients for the P(20) CO2 laser transition,” Appl. Phys. Lett. 25 (10), 609–611 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. O. Bulanin, V. P. Bulychev, and E. B. Khodos, “Calculation of parameters of rovibrational lines in 9.4 and 10.4 µm CO2 bands at different temperatures,” Opt. Spektrosk. 48 (4), 732–737 (1980).

    Google Scholar 

  20. V. I. Mudrov and V. L. Kushko, Measurement Processing Techniques (Radio i svyaz', Moscow, 1983) [in Russian].

    Google Scholar 

  21. N. S. Leshenyuk and V. V. Pashkevich, “Accuracy characteristics in the diagnostics of active media of CO2 lasers from gain coefficient measurements,” J. Appl. Spectrosc. 46 (4), 354–359 (1987).

    Article  ADS  Google Scholar 

  22. R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 laser,” IEEE J. Quantum Electron. 19 (11), 1674–1679 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Arshinov.

Additional information

Original Russian Text © K.I. Arshinov, O.N. Krapivnaya, V.V. Nevdakh, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshinov, K.I., Krapivnaya, O.N. & Nevdakh, V.V. Multifrequency laser diagnostics of vibrational nonequilibrium gas media containing CO2 molecules. Atmos Ocean Opt 29, 12–17 (2016). https://doi.org/10.1134/S1024856016010048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016010048

Keywords

Navigation