Skip to main content
Log in

Steady-state point-source stimulation of a nerve containing axons with an arbitrary distribution of diameters

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The paper extends a mathematical model for point-source electrical stimulation of a nerve. In the original model, it was assumed that all the axons in the nerve have the same diameter. In this paper the model is extended to represent a nerve with an arbitrary distribution of axon diameters. It is shown that the assumption of identical axons is justified for a typical human nerve if the ‘representative’ axon diameter is taken as the area-weighted average of the diameter distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, K. W. andPlonsey, R. (1988) Development of a model for point source electrical fibre bundle stimulation.Med. & Biol. Eng. & Comput.,26, 466–475.

    Article  Google Scholar 

  • Altman, K. W. andPlonsey, R. (1989a) Analysis of the longitudinal and radial resistivity measurements of the nerve trunk.Ann. Biomed. Eng.,17, 313–324.

    Article  Google Scholar 

  • Altman, K. W. andPlonsey, R. (1989b) Excitation in a model for time-dependent electrical nerve bundle stimulation. IEEE EMBS 11th Ann. Int. Conf., Seattle, Washington, 8th–12th Nov., 975–976.

  • Altman, K. W. andPlonsey, R. (1990a) Point source nerve bundle stimulation: Effects of fiber diameter and depth on simulated excitation.IEEE Trans.,BME-37, 688–698.

    Google Scholar 

  • Altman, K. W. andPlonsey, R. (1990b) Analysis of excitable cell activation: relative effects of external electrical stimuli.Med. & Biol. Eng. & Comput.,28, 574–580.

    Article  Google Scholar 

  • Andrietti, F. andBernardini, G. (1984) Segmented and ‘equivalent’ representation of the cable equation.Biophys. J.,46, 615–623.

    Article  Google Scholar 

  • Boyd, I. A. andDavey, M. R. (1968)Composition of peripheral nerves. E. & S. Livingstone, London.

    Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist.Med. & Biol. Eng.,5, 271–293.

    Google Scholar 

  • McNeal, D. R. (1976) Analysis of a model for excitation of myelinated nerve.IEEE Trans.,BME-23, 329–337.

    Google Scholar 

  • Plonsey, R., Henriquez, C. andTrayanova, N. (1987) Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology.Med. & Biol. Eng. & Comput.,26, 126–129.

    Article  Google Scholar 

  • Poduslo, J. F. (1984) Glycoproteins of the peripheral nervous system. InPeripheral neuropathy, vol. 1.Dyck, P. J., Thomas, P., Lambert, E. H. andBunge, R. (Eds.), W. B. Saunders Co., Philadelphia, Pennsylvania.

    Google Scholar 

  • Rattay, F. (1986) Analysis of models for external stimulation of axons.IEEE Trans.,BME-33, 974–977.

    Google Scholar 

  • Roth, B. J. andWikswo, J. P. Jr (1985) The electric potential and magnetic field of an axon in a nerve bundle.Math. Biosci.,76, 37–57.

    Article  MATH  Google Scholar 

  • Roth, B. J. andGielen, F. L. H. (1987) A comparison of two models for calculating the electrical potential in skeletal muscle.Ann. Biomed. Eng.,15, 591–602.

    Article  Google Scholar 

  • Rubinstein, J. T. andSpelman, F. A. (1988) Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.Biophys. J.,54, 975–981.

    Google Scholar 

  • Rushton, W. A. H. (1951) A theory of the effects of fibre size in medullated nerve.J. Physiol.,115, 101–122.

    Google Scholar 

  • Schoonhoven, R., Stegeman, D. F., van Oosterom, A. andDautzenberg, G. F. M. (1988) The inverse problem in electroneurography—I: conceptual basis and mathematical formulation.IEEE Trans.,BME-35, 769–777.

    Google Scholar 

  • Tasaki, I. (1955) New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber.Am. J. Physiol.,181, 639–650.

    Google Scholar 

  • Thomas, P. K. andOlsson, Y. (1984) Microscopic anatomy and function of the connective tissue components of peripheral nerve. InPeripheral neuropathy, vol. 1.Dyck, P. J., Thomas, P., Lambert, E. H. andBunge, R. (Eds.), W. B. Saunders Co., Philadelphia, Pennsylvania.

    Google Scholar 

  • Tung, L. A. (1978) A bidomain model for describing ischemic myocardial d.c. potentials. Ph.D. dissertation, MIT, Cambridge, Massachusetts.

    Google Scholar 

  • Veltink, P. H., van Alsté, J. A. andBoom, H. B. K. (1988) Simulation of intrafascicular and extraneural nerve stimulation.IEEE Trans.,BME-35, 69–75.

    Google Scholar 

  • Veltink, P. H., van Veen, B. K., Struijk, J. J., Holsheimer, J. andBoom, H. B. K. (1989) A modeling study of nerve fascicle stimulation.,BME-36, 683–692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, B.J., Altman, K.W. Steady-state point-source stimulation of a nerve containing axons with an arbitrary distribution of diameters. Med. Biol. Eng. Comput. 30, 103–108 (1992). https://doi.org/10.1007/BF02446201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446201

Keywords

Navigation