Skip to main content
Log in

A comparison of two models for calculating the electrical potential in skeletal muscle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We compare two models for calculating the extracellular electrical potential in skeletal muscle bundles: one a bidomain model, and the other a model using spatial and temporal frequency-dependent conductivities. Under some conditions the two models are nearly identical. However, under other conditions the model using frequency-dependent conductivities provides a more accurate description of the tissue. The bidomain model, having been developed to describe syncytial tissues like cardiac muscle, fails to provide a general description of skeletal muscle bundles due to the non-syncytial nature of skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, J.W., Jr. and R. Plonsey. A mathematical evaluation of the core conductor model.Biophys. J. 6:95–112, 1966.

    CAS  PubMed  Google Scholar 

  2. Clark, J.W., Jr. and R. Plonsey. The extracellular field of the single active nerve fiber in a volume conductor.Biophys. J. 8:842–864, 1968.

    CAS  PubMed  Google Scholar 

  3. Cole, K.S., C-L. Li and A.F. Bak. Electrical analogues for tissues.Exp. Neurol. 24:459–473 1969.

    Article  CAS  PubMed  Google Scholar 

  4. Cole, K.S. and H.J. Curtis. Electric physiology. In:Medical Physics, edited by O. Glasser. Chicago, IL: The Year Book Publ. Inc., 1944, pp. 344–348.

    Google Scholar 

  5. Eisenberg, R.S. Impedance measurement of the electrical structure of skeletal muscle. In:Handbook of Physiology, Sec. 10. Bethesda, MD: Amer. Physiol. Soc., 1983, pp. 301–323.

    Google Scholar 

  6. Eisenberg, R.S., V. Barcilon, and R.T. Mathias. Electrical properties of spherical syncytia.Biophys. J. 25:151–180, 1979.

    CAS  PubMed  Google Scholar 

  7. Falk, G. and P. Fatt. Linear electrical properties of striated muscle fibers observed with intracellular electrodes.Proc. Roy. Soc. B. 160:69–123, 1964.

    CAS  Google Scholar 

  8. Gielen, F.L.H. Electrical conductivity and histological structure of skeletal muscle. Ph.D. dissertation, Twente University, Enschede, The Netherlands, 1983.

    Google Scholar 

  9. Gielen, F.L.H., H.E.P. Cruts, B.A. Albers, K.L. Boon, W. Wallinga-de Jonge, and H.B.K. Boom. Model of electrical conductivity of skeletal muscle based on tissue structure.Med. Biol. Eng. Comput. 24:34–40, 1986.

    CAS  PubMed  Google Scholar 

  10. Gielen, F.L.H., W. Wallinga-de Jonge, and K.L. Boon. Electrical conductivity of skeletal muscle tissue: experimental results from different musclesin vivo.Med. Biol. Eng. Comput. 22:569–577, 1984.

    CAS  PubMed  Google Scholar 

  11. Haas, H.G. and G. Brommundt. Influence of intercellular clefts on potential and current distribution in a multi fiber preparation.Biophys. J. 30:327–350, 1980.

    CAS  PubMed  Google Scholar 

  12. Miller, W.T., III and D.B. Geselowitz. Simulation studies of the electrocardiogram, I. normal heart.Circ. Res. 43:301–315, 1978.

    CAS  PubMed  Google Scholar 

  13. Nicholson, P.W. Specific impedance of cerebral white matter.Exp. Neurol. 13:386–401, 1965.

    Article  CAS  PubMed  Google Scholar 

  14. Pilkington, T.C. and R. Plonsey. Macroscopic cardiac sources. In:Engineering Contributions to Biophysical Electrocardiography. New York, NY: IEEE Press, 1982, pp. 34–39.

    Google Scholar 

  15. Plonsey, R. and R.C. Barr. The four-electrode resistivity technique as applied to cardiac muscle.IEEE Tran. Biomed. Eng. BME-29:541–546, 1982.

    CAS  Google Scholar 

  16. Plonsey, R. and R.C. Barr. A critique of impedance measurements in cardiac tissue.Ann. Biomed. Eng. 14:307–322, 1986.

    Article  CAS  PubMed  Google Scholar 

  17. Roth, B.J., F.L.H. Gielen and J.P. Wikswo, Jr. Spatial and temporal frequency-dependent conductivities in volume conductor calculations of skeletal muscle. submitted for publication, 1987.

  18. Roth, B.J. and J.P. Wikswo, Jr. A bidomain model for the extracellular potential and magnetic field of cardiac tissue.IEEE Trans. Biomed. Eng. BME-33:467–469, 1986.

    CAS  PubMed  Google Scholar 

  19. Tung, L. A bidomain model for describing ischemic myocardial dc potentials. Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, 1978.

    Google Scholar 

  20. Van Oosterom, A., R.W. de Boer, and R.Th. van Dam. Intramural resistivity of cardiac tissue.Med. Biol. Eng. Comput. 17:337–343, 1979.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Office of Naval Research under Contract N00014-82-K-0107, and by the National Institutes of Health Grant 1-R01 NS 19794.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, B.J., Gielen, F.L.H. A comparison of two models for calculating the electrical potential in skeletal muscle. Ann Biomed Eng 15, 591–602 (1987). https://doi.org/10.1007/BF02364251

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364251

Keywords

Navigation